Classify these points using SVMs

Step 1: Place a Gaussian bump on point 1

Step 2: Place a Gaussian bump on point 2

Step 3: Run an SVM: $f^*(x) = \alpha_1 e^{-\gamma ||x_1 - x||^2} + \alpha_2 e^{-\gamma ||x_2 - x||^2}$

• unlabeled data changes our belief.

• unlabeled data changes our belief. • operating assumptions: Cluster/Manifold.

- what kind of kernel will work ?
- unlabeled data changes our belief. operating assumptions: Cluster/Manifold.

- unlabeled data changes our belief.
- what kind of kernel will work ?

- operating assumptions: Cluster/Manifold.
- original space rich enough. complexity ?

Can we define a kernel \tilde{k} that is adapted to the geometry of the data?

Can we define a kernel \tilde{k} that is adapted to the geometry of the data?

Think of a continuous symmetric, positive-definite function \tilde{k} so that

$$f^{*}(x) = \beta_{1}\tilde{k}(x_{1}, x) + \beta_{2}\tilde{k}(x_{2}, x)$$

gives a circular decision surface

Transductive Versus Semi-supervised Learning Transductive Learning:

- Data is a Point Cloud V. Model Geometry as a graph.
- Define a Graph kernel $k_G : V \times V \mapsto \mathcal{R}$. Learn a function $f : V \mapsto \mathcal{R}$.

Problem: Out-of-Sample Extension

Transductive Versus Semi-supervised Learning Transductive Learning:

- Data is a Point Cloud V. Model Geometry as a graph.
- Define a Graph kernel $k_G : V \times V \mapsto \mathcal{R}$. Learn a function $f : V \mapsto \mathcal{R}$.

Problem: Out-of-Sample Extension

Same Picture for Transduction.

Transductive Versus Semi-supervised Learning

Semi-supervised Learning:

- Data is a Point Cloud V in an *ambient space*. Model Geometry as a graph.
- Define an ambient kernel $\tilde{k}: X \times X \mapsto \mathcal{R}$. Learn a function $f: X \mapsto \mathcal{R}$.

Beyond the Point Cloud: from Transductive to Semi-supervised Learning

Vikas Sindhwani, Partha Niyogi, Mikhail Belkin

Department of Computer Science

University of Chicago

Warping an RKHS for Semi-supervised Learning.

Before Observing Unlabeled Data

Choose a Kernel (encodes some form of prior knowledge)

$$k(x,z): X \times X \mapsto \mathcal{R}$$

- space of functions: $f \in \mathcal{H} : X \mapsto \mathcal{R}$
- inner product on that space: $\langle f, g \rangle_{\mathcal{H}}$
- complexity measure: $||f||_{\mathcal{H}}$

After Observing Unlabeled Data

Data ${x_i}_{i=1}^n$ (drawn from some unknown distribution) alters our complexity beliefs.

- Data dependent map $S : \mathcal{H} \mapsto \mathcal{V}$
- inner product on \mathcal{V} : $\langle ., . \rangle_{\mathcal{V}}$
- complexity measure: $||Sf||_{\mathcal{V}}$

Warping an RKHS

Construct $\tilde{\mathcal{H}}$ by warping \mathcal{H} : $\tilde{\mathcal{H}}$ has same functions: $\tilde{\mathcal{H}} = \{f \in \mathcal{H}\}$ But modified inner product:

$$\langle f,g \rangle_{\tilde{\mathcal{H}}} = \langle f,g \rangle_{\mathcal{H}} + \langle Sf,Sg \rangle_{\mathcal{V}}$$

And a data-refined notion of complexity:

$$\|f\|_{\tilde{\mathcal{H}}}^{2} = \|f\|_{\mathcal{H}}^{2} + \|Sf\|_{\mathcal{V}}^{2}$$

Warping an RKHS

If *S* is a bdd linear operator $||Sf||_{\mathcal{V}} \leq M||f||_{\mathcal{H}}$

• The two norms are compatible since:

$$\|f\|_{\mathcal{H}}^2 \le \|f\|_{\tilde{\mathcal{H}}}^2 \le (M+1)\|f\|_{\mathcal{H}}^2$$

- $\therefore \tilde{\mathcal{H}}$ is a Hilbert Space.
- Evaluation functionals on $\tilde{\mathcal{H}}$ are bounded:

$$f(x) \le C \|f\|_{\mathcal{H}} \implies f(x) \le C \|f\|_{\tilde{\mathcal{H}}}$$

 $\therefore \tilde{\mathcal{H}}$ is a (random) RKHS; kernel $\tilde{k} : X \times X \mapsto \mathcal{R}$

Warping an RKHS

- What is the kernel $\tilde{k}(x, y)$ associated with the warped RKHS $\tilde{\mathcal{H}}$?
- Can explicitly compute, for evaluation maps:

$$S: \mathcal{H} \mapsto \mathcal{R}^n \quad Sf = [f(x_1) \dots f(x_n)] = \mathbf{f}$$

with a Point Cloud semi-norm:

$$||f||_{\mathcal{V}}^2 = \mathbf{f}^T M \mathbf{f} \quad M \succeq 0 \text{ symmetric}$$

Data-deformed Kernel

Reproducing Property in \mathcal{H} : $f(x) = \langle f, k(x, \cdot) \rangle_{\mathcal{H}}$ Reproducing Property in $\tilde{\mathcal{H}}$: $f(x) = \langle f, \tilde{k}(x, \cdot) \rangle_{\tilde{\mathcal{H}}}$ **Decompose:** $\mathcal{H} = span \{k(x_i, \cdot)\}_{i=1}^n \oplus \mathcal{H}^{\perp}$ $\forall f \in \mathcal{H}^{\perp} \ \langle f, k_{x_i} \rangle_{\mathcal{H}} = f(x_i) = 0$ S only deforms the span $\therefore Sf = 0 \implies f(x) = \langle f, \tilde{k}(x, \cdot) \rangle_{\mathcal{H}}$

$$\therefore \langle f, k(x, \cdot) - \tilde{k}(x, \cdot) \rangle_{\mathcal{H}} = 0$$

$$\implies k(x,\cdot) - \tilde{k}(x,\cdot) \in span \{k(x_i,\cdot)\}_{i=1}^n$$

Data-deformed Kernel

So,
$$\tilde{k}(x,\cdot) = k(x,\cdot) + \sum_{j=1}^{n} \beta_j(x)k(x_j,\cdot)$$

Find $\beta(x) = [\beta_1(x) \dots \beta_n(x)]$ by solving a linear system: $k(x_i, x) = \langle k(x_i, .), \tilde{k}(x, \cdot) \rangle_{\tilde{\mathcal{H}}}$ $= \langle k(x_i, .), k(x, \cdot) + \sum_j \beta_j(x) k(x_j, \cdot) \rangle_{\tilde{\mathcal{H}}}$ $= \langle k(x_i, .), k(x, \cdot) + \sum_i \beta_i(x) k(x_i, \cdot) \rangle_{\mathcal{H}} + \mathbf{k_{x_i}}^t M \mathbf{g}$ $\mathbf{k}_{\mathbf{x}_{\mathbf{i}k}} = k(x_i, x_k)$ $\mathbf{g}_k = k(x, x_k) + \sum_j \beta_j(x) k(x_j, x_k)$

Kernel of the Warped RKHS

Solve:

$$(K + KMK)\beta(x) = -KM\mathbf{k}_x$$

Kernel of \tilde{H} :

$$\tilde{k}(x,z) = k(x,z) - \mathbf{k}_x^t (I + MK)^{-1} M \mathbf{k}_z$$

where $\mathbf{k}_x = [k(x_1, x)...k(x_n, x)]$ and *K* is the gram matrix of k(.,.) over $\{x_i\}_{i=1}^n$.

Choosing M for SSL

- Construct a Graph *W*.
- Compute Laplacian of the Point Cloud.

$$L = D - W$$
 where $D_{ii} = \sum_{j} W_{ij}$

$$\mathbf{f}^{t}L\mathbf{f} = \sum_{i,j=1}^{n} (f(x_{i}) - f(x_{j}))^{2}W_{ij}$$

her Choices: L^{p} , $r(L) = \sum_{i=1}^{n} r(\lambda_{i})v_{i}v_{i}^{T}$

Algorithms

Laplacian RLS, Laplacian SVM: $f^* = \underset{\tilde{\mathcal{H}}}{\operatorname{argmin}} \frac{1}{l} \sum_{i=1}^{l} V(x_i, y_i, f) + \gamma_A ||f||_{\tilde{k}}^2$

Setting $M = \frac{\gamma_I}{\gamma_A}L$ we can re-interpret Manifold Regularization (Belkin, Niyogi, Sindhwani 2004) algorithms as standard kernel methods in this warped, random RKHS $\tilde{\mathcal{H}}$. Think of the ratio $\frac{\gamma_I}{\gamma_A}$ as the strength of deformation

Other possibilities? : Laplacian SVR, One-class SVMs ...

Experiments

Datasets

Dataset	С	d	1	п	k
g50c	2	50	50	550	Gaussian
Coil20	20	1024	40	1440	Gaussian
Uspst	10	256	50	2007	Gaussian
mac-windows	2	7511	50	1946	Gaussian
Webkb (page)	2	3000	12	1051	linear
Webkb (link)	2	1840	12	1051	linear
Webkb (page+link)	2	4840	12	1051	linear

Parameters:

All datasets except Webkb: $\gamma_A = 10^{-6}$, $\gamma_I = 0.01$ held fi xed, $nn = \{10, 50, 100, 200\}$, $\sigma = \sigma_0 * [0.25 \ 0.5 \ 1 \ 2 \ 4]$, $p = \{1, 2, ..., 5\}$ tuned by 5-fold CV. For WebKB, nn = 200, p = 5, γ_A , γ_I optimized for best performance over the unlabeled data.

Experiments: Performance on n - 1 *unlabeled examples*

Dataset \rightarrow	g50c	Coil20	Uspst	mac-win	WebKB	W ebKB	WebKB
Algorithm \downarrow					(link)	(page)	(page+link)
SVM (n)	4.0	0.0	2.8	2.4	5.1	5.3	0.7
RLS (n)	4.0	0.0	2.5	2.8	5.6	6.4	2.2
SVM (I)	9.7	24.6	23.6	18.9	28.1	24.3	18.2
RLS (I)	8.5	26.0	23.6	18.8	30.3	30.2	23.9
Graph-Trans	17.3	6.2	21.3	11.7	22.0	10.7	6.6
TSVM	6.9	26.3	26.5	7.4	14.5	8.6	7.8
Graph-density	8.3	6.4	16.9	10.5	-	-	-
∇TSVM	5.8	17.6	17.6	5.7	-	-	-
LDS	5.6	4.9	15.8	5.1	-	-	-
LapSVM	5.4	4.0	12.7	10.4	17.2	10.9	6.4
LapRLS	5.2	4.3	12.7	10.0	19.2	11.2	7.5

http://www.cs.uchicago.edu/~vikass/research.html

Experiments: Out of Sample Extension (4-fold CV variant)

Contribution

- Discussed a procedure for warping an RKHS for Semi-supervised Learning.
- Derived a Kernel for SSL.
- Turns transductive and supervised methods into Semi-supervised Learners.
- Demonstrates good performance in both
 Transductive and Semi-supervised settings
 (out of sample extension).