# Scalable Matrix-valued Kernel Learning: Multivariate Regression and Granger Causality

Vikas Sindhwani IBM Research, NY

#### With Minh Ha Quang (IIT, Genova) and Aurelie Lozano (IBM)

July 13, 2013 Uncertainty in Artificial Intelligence (UAI) 2013

# **Problem Setting**

• Estimate, non-parametrically, an unknown non-linear dependency,

 $f: \mathcal{X} \mapsto \mathcal{Y},$ 

from labeled examples, where  $\mathcal Y$  is a "structured" output space.

- "Structure": multiple outputs; joint prediction more efficient.
- $\mathcal{Y}$ : Hilbert space structure  $\langle \cdot, \cdot \rangle_{\mathcal{Y}}$ ,  $\| \cdot \|_{\mathcal{Y}}$ . Focus on  $\mathcal{Y} \subseteq \mathbf{R}^n$ .
- Multivariate Regression, Multitask, Structured Output Learning.
- Jointly learn f and the structure on  $\mathcal{Y}$ .
- Very natural to attempt to formulate as Tikhonov Regularization in *vector-valued* Reproducing Kernel Hilbert Spaces (RKHS):

$$\underset{f \in \mathcal{H}}{\arg\min} \|\mathbf{y}_{i} - f(\mathbf{x}_{i})\|_{\mathcal{Y}}^{2} + \lambda \|f\|_{\mathcal{H}}^{2}.$$
 (1)

## Challenges with vector-valued RKHS methods

- Long history : Laurent Schwartz (1964), Burbea and Masani (1984),..., MP(2005), but not as popular as scalar kernel methods.
- Kernel function  $\overrightarrow{k}(\mathbf{x}, \mathbf{z})$ , which encodes input and output structure, is *matrix-valued*. This makes model selection daunting.
  - By contrast, widely popular Gaussian or Polynomial scalar-valued kernels have just one hyperparameter.
- Computational Complexity: Ridge Regression in a general  $\mathbb{R}^n$ -valued RKHS with l labeled samples requires  $O(l^3n^3)$  time and  $O(l^2n^2)$  storage.
- To be able to even consider vector-valued RKHS methods for an application, we need scalable matrix-valued kernel learning.

# **Contributions and Outline**

- Function estimation in vector-valued RKHS dictionaries generalize scalar multiple kernel learning (MKL), structured sparsity algorithms.
- Full resolution of kernel learning for *separable* matrix-valued kernels.
  - Eigendecomposition-free algorithms that orchestrate inexact solvers.
- Empirical Studies
  - Statistical effectiveness of matrix-valued kernel learning.
  - Computational effectiveness of using inexact solvers.
- Enable a new application: Non-linear Graphical Granger Causality.
- Generalization bounds based on Rademacher complexity for our vector-valued hypothesis sets (analogous to scalar MKL results).

#### Vector-valued RKHS [Michelli and Pontil, 2005]

- A Hilbert space  $\mathcal{H}$  of functions mapping  $\mathcal{X} \to \mathcal{Y}$  is a *vector-valued RKHS* if there is a function  $\overrightarrow{k} : \mathcal{X} \times \mathcal{X} \to \mathcal{L}(\mathcal{Y})$  such that:
  - 1. For all  $\mathbf{x} \in \mathcal{X}, \mathbf{y} \in \mathcal{Y}$ , the function

$$\delta_{\mathbf{x},\mathbf{y}}(\cdot) = \overrightarrow{k}(.,\mathbf{x})\mathbf{y} \in \mathcal{H}$$
(2)

2. For all  $f \in \mathcal{H}$ , the **reproducing property** (RP) holds

$$\langle f, \delta_{\mathbf{x}, \mathbf{y}} \rangle_{\mathcal{H}} = \langle f(\mathbf{x}), \mathbf{y} \rangle_{\mathcal{Y}} \quad \forall \mathbf{x} \in \mathcal{X}, \mathbf{y} \in \mathcal{Y}$$
 (3)

• All niceness properties (theoretical and algorithmic) of RKHSs ultimately flow from the reproducing property.

#### **Tikhonov Regularization in Vector-valued RKHS**

$$\underset{f \in \mathcal{H}_{\overrightarrow{k}}}{\operatorname{arg\,min}} \frac{1}{l} \sum_{i=1}^{l} \|f(\mathbf{x}_{i}) - \mathbf{y}_{i}\|_{2}^{2} + \lambda \|f\|_{\mathcal{H}_{\overrightarrow{k}}}^{2}$$

• **Representer Theorem**: solution is the sum of linear transformations.

$$f(\cdot) = \sum_{i=1}^{l} \overrightarrow{k}(\cdot, \mathbf{x}_i) \boldsymbol{\alpha}_i, \text{ where } \boldsymbol{\alpha}_i \in \mathbf{R}^n$$

• Huge RLS linear system of size  $ln \times ln$ :

$$\left(\overrightarrow{\mathbf{K}} + \lambda l \mathbf{I}_{nl}\right) vec(\mathbf{C}^T) = vec(\mathbf{Y}^T)$$

where with  $\overrightarrow{\mathbf{K}}_{ij} = \overrightarrow{k}(\mathbf{x}_i, \mathbf{x}_j) \in \mathbf{R}^{n \times n}$  and  $\mathbf{C} = [\boldsymbol{\alpha}_1 \dots \boldsymbol{\alpha}_l]^T \in \mathbf{R}^{l \times n}$ 

#### Separable Matrix-valued Kernels

- $\overrightarrow{k}(\mathbf{x}, \mathbf{z}) = k(\mathbf{x}, \mathbf{z})\mathbf{L}$ 
  - k is a scalar *input kernel* function and L is an  $n \times n$  symmetric positive-definite *output kernel* matrix.
  - Simplicity, universality, extensibility and potential for scalability.
  - We use the notation  $\mathcal{H}_{k\mathbf{L}}$  for the associated RKHS
  - If  $f = (f_1 \dots f_n) \in \mathcal{H}_{k\mathbf{L}}$ , then each scalar component  $f_i \in \mathcal{H}_k$
- Regularization:  $||f||^2_{\mathcal{H}_{k\mathbf{L}}} = \sum_{ij} (\mathbf{L}^{\dagger})_{ij} \langle f_i, f_j \rangle_{\mathcal{H}_k}$  where  $f = (f_1 \dots f_n)$ .
  - Suppose G is the adjacency matrix of an output similarity graph and  ${f M}$  is its Graph Laplacian. Then, for  ${f L}={f M}^\dagger$ ,

$$\|f\|_{\mathcal{H}_{k\mathbf{L}}}^2 = \frac{1}{2} \sum_{i,j=1}^n \|f_i - f_j\|_{\mathcal{H}_k}^2 G_{ij} + \sum_{i=1}^n \|f_i\|_{\mathcal{H}_k}^2 G_{ii}$$

#### **Ridge Regression with Separable Matrix-valued Kernels**

• Regularized Least Squares solution can be written in two ways:

$$(\mathbf{K} \otimes \mathbf{L} + \lambda l \mathbf{I}_{nl}) \operatorname{vec}(\mathbf{C}^T) = \operatorname{vec}(\mathbf{Y}^T),$$
 (4)

$$\mathbf{KCL} + \lambda l \mathbf{C} = \mathbf{Y}. \tag{5}$$

- 
$$O(l^2 + n^2)$$
 storage instead of  $O(l^2n^2)$   
-  $O(n^3 + l^3)$  time instead of  $O(l^3n^3)$ .

•  $O(l^3 + n^3)$  Sylvester solver based on Eigendecomposition:

- 
$$\mathbf{K} = \mathbf{T}\mathbf{M}\mathbf{T}^{T}$$
 where  $\mathbf{M} = diag(\sigma_{1} \dots \sigma_{l})$   
-  $\mathbf{L} = \mathbf{S}\mathbf{N}\mathbf{S}^{T}$  where  $\mathbf{N} = diag(\rho_{1} \dots \rho_{n})$   
- Solution:  $\mathbf{C} = \mathbf{T}\tilde{\mathbf{X}}\mathbf{S}^{T}$  where  $\tilde{\mathbf{X}}_{ij} = \frac{(\mathbf{T}^{T}\mathbf{Y}\mathbf{S})_{ij}}{\sigma_{i}\rho_{j}+\lambda}$ .

# **Output Kernel Learning**

- An extended RLS problem: also optimize L over PSD cone.  $\underset{f \in \mathcal{H}_{k\mathbf{L}}, \mathbf{L} \in \mathcal{S}_{+}^{n}}{\operatorname{arg\,min}} \frac{1}{l} \sum_{i=1}^{l} \|f(\mathbf{x}_{i}) - \mathbf{y}_{i}\|_{2}^{2} + \lambda \|f\|_{\mathcal{H}_{\overrightarrow{k}}}^{2} + \rho \|\mathbf{L}\|_{fro}^{2}$
- Dinuzzo et. al.'s (ICML, 2011) Block Coordinate Descent approach
  - L fixed: Solve Sylvester equations for f by Eigendecomposition.
  - f fixed: optimize over  $\mathbf{L} \in \mathbf{R}^{n \times n}$  leading to a linear system, or over  $\mathbf{L} \in S^n$  leading to another Sylvester equation.
- Three issues with this approach:
  - L updates hold only if f is solved exactly (Eigensolver).
  - PSD constraints are not provably satisfied.
  - Particularly expensive if scalar kernel is also being optimized.

## Learning over a vector-valued RKHS dictionary

- Goals: Fuller resolution of separable kernel learning problem with eigendecomposition-free scalable solvers.
- Setup a dictionary of separable matrix-valued base kernels
   \$\mathcal{D}\_L = \{k\_1 L, \ldots k\_m L\}\$ and define a space of functions expressible as sums of component functions drawn from RKHSs in \$\mathcal{D}\_L\$:

$$\mathcal{H}(\mathcal{D}_{\mathbf{L}}) = \left\{ f = \sum_{j=1}^{m} f_j : f_j \in \mathcal{H}_{k_j \mathbf{L}} \right\}$$
(6)

- *Functional sparsity* of *f*: number of non-zero component functions.
- Our objective function (for large *m*, need RKHS structure again):

$$\underset{f \in \mathcal{H}(\mathcal{D}_{\mathbf{L}}), \mathbf{L} \in \mathcal{S}^{n}_{+}(\tau)}{\arg \min} \frac{1}{l} \sum_{i=1}^{l} \|f(\mathbf{x}_{j}) - \mathbf{y}_{i}\|_{2}^{2} + \lambda \Omega[f],$$
(7)

# Variationally defined Regularizers $\Omega[f]$

•  $l_p$  regularizers:

$$\Omega[f] = \|f\|_{l_p(\mathcal{H}(\mathcal{D}_{\mathbf{L}}))} = \min_{f:f=\sum_j f_j} \left\| \left( \|f_1\|_{\mathcal{H}_{k_1\mathbf{L}}}, \dots, \|f_m\|_{\mathcal{H}_{k_m\mathbf{L}}} \right) \right\|_p$$

-  $p \rightarrow 1$ : induces *functional sparsity* (generalization of group Lasso).

-  $p \rightarrow 2$ : non-sparse combinations.

• Broader class of regularizers that admit variational representations:

$$\Omega(f) = \min_{\boldsymbol{\eta} \in \mathbf{R}_{+}^{m}} \sum_{i=1}^{m} \frac{\|f_{i}\|_{\mathcal{H}_{k_{i}\mathbf{L}}}^{2}}{\eta_{i}} + \omega(\boldsymbol{\eta})$$
(8)

For  $l_1$ , the auxillary function  $\omega(\eta)$  is indicator function for simplex.

#### Learning convex combinations of base kernels

 Variational regularizers relate non-differentiable mixed norms to weighted sum of RKHS norms, which further is equivalent to learning with a single kernel given by a convex combination of base kernels.

**Proposition 1.** The function:  $\vec{k}_{\eta} = \sum_{i=1}^{m} \eta_i \vec{k}_i$ , is the reproducing kernel of the sum space, with norm:

$$\|f\|_{\mathcal{H}_{\overrightarrow{k}\eta}}^2 = \min_{\substack{f=\sum_{j=1}^m f_i, f_j \in \mathcal{H}_{\overrightarrow{k}_j}}} \sum_{j=1}^m \frac{\|f_j\|^2}{\eta_j}.$$

- Important for handling large m.
- Generalizes analogous results in the scalar MKL literature.
- Joint optimization: scalar kernel weights  $\eta$ , L and  $f \in \mathcal{H}_{k_{\eta}L}$ .

## Spectahedron Constraints on Output Kernel ${\rm L}$

•  $\mathbf{L} \in \mathcal{S}^n_+(\tau)$  - a semi-definite analogue of the simplex.

$$\mathcal{S}^{n}_{+}(\tau) = \{ \mathbf{X} \in \mathcal{S}^{n}_{+} | trace(\mathbf{X}) \leq \tau \}$$

- Rationale (besides low-rankness encouraged by trace norm):
  - Can use a specialized sparse SDP solver whose iterations involve computing a single extremal eigenvector of the gradient inexactly.
  - Implies that a Conjugate Gradient iterative solver for f optimization encounters numerically well-conditioned problems.
  - Trace constraint parameter naturally appears in Generalization bounds based on Rademacher complexity.

#### **Block Coordinate Descent**

• Finite dimensional version of the optimization problem:

$$\underset{\mathbf{C}\in\mathbf{R}^{n\times l},\mathbf{L}\in\mathcal{S}^{n}_{+}(\tau),\boldsymbol{\eta}\in\mathbf{R}^{m}_{+}}{\arg\min}\frac{1}{l}\left\|\mathbf{K}_{\boldsymbol{\eta}}\mathbf{C}\mathbf{L}-\mathbf{Y}\right\|_{F}^{2}$$
$$+\lambda\ trace\left(\mathbf{C}^{T}\mathbf{K}_{\boldsymbol{\eta}}\mathbf{C}\mathbf{L}\right)+\omega(\boldsymbol{\eta}).$$
(9)

- Optimize C with Conjugate-Gradient Sylvester solver.
- Optimize  $\eta$  using closed form update rules (akin to scalar MKL).
- Optimize  ${\bf L}$  using a specialized sparse SDP solver.
- Vector-valued Prediction function:

$$f^{\star}(\mathbf{x}) = \mathbf{L}\mathbf{C}^{T}[k_{\eta}(\mathbf{x}, \mathbf{x}_{1}) \dots k_{\eta}(\mathbf{x}, \mathbf{x}_{l})]^{T}$$
(10)

#### Sylvester Solver based on Conjugate Gradient

• Use iterative CG solver directly on:

$$(\mathbf{K}_{\eta} \otimes \mathbf{L} + \lambda l \mathbf{I}_{nl}) \operatorname{vec}(\mathbf{C}^{T}) = \operatorname{vec}(\mathbf{Y}^{T})$$
(11)

- can exploit warm-starts from previous solution.
- coefficient matrix need not be materialized
- fast matrix-vector products O(nl(l+n)):

$$(\mathbf{K}_{\eta} \otimes \mathbf{L} + \lambda l \mathbf{I}_{nl}) vec(\mathbf{C}^{(k)T}) = vec(\mathbf{K}_{\eta} \mathbf{C}^{(k)} \mathbf{L} + \lambda l \mathbf{C}^{(k)})$$
(12)

- can exploit structure, e.g.,  ${f K}$  is low-rank or sparse
- can be used for more general problems involving  $\sum_i \mathbf{K}_i \otimes \mathbf{L}_i$

#### **CG** Sylvester Solver

**Proposition 2** (Convergence Rate for CG Sylvester solver). Assume  $l_1$ norm for  $\Omega$ . Let  $\mathbf{C}^{(k)}$  be the CG iterate at step k,  $\mathbf{C}^*$  be the optimal solution (at current fixed  $\boldsymbol{\eta}$  and  $\mathbf{L}$ ) and  $\mathbf{C}^{(0)}$  be the initial iterate (warm-started from previous value). Then,

$$\|\mathbf{C}^{(k)} - \mathbf{C}^*\|_F \le 2\sqrt{\phi} \left(\frac{\sqrt{\phi} - 1}{\sqrt{\phi} + 1}\right)^k \|\mathbf{C}^{(0)} - \mathbf{C}^*\|_F, \quad (13)$$

where  $\phi = 1 + \frac{\gamma \tau}{l\lambda}$  with  $\gamma = \max_i ||\mathbf{K}_i||_2$ . For dictionaries involving only Gaussian scalar kernels, the condition number is bounded as:

$$\phi \le 1 + \frac{\tau}{\lambda},\tag{14}$$

i.e., the convergence rate depends only on the relative strengths of regularization parameters  $\lambda, \tau$ .

# Sparse SDP solver for L [Hazan, 2008]



- Adaptation: bounded trace, exact line search, analysis.
- Inexact eigenvector computation via truncated power method.
- **Proposition**: Assume  $l_1$  norm. For  $k \ge 16(\tau \gamma)^2 / \epsilon$ ,  $g(\mathbf{L}^{(k+1)}) - g(\mathbf{L}^{\star}) \le \epsilon/2$  where  $\gamma = \max_i \|\mathbf{K}_i\|_2$ .



#### Cheap iterations using inexact numerical optimization

- Tradeoff: Many, cheap iterations versus few, expensive iterations.
- Caltech101: 3060 training, 1355 test images, p=1.7,  $\lambda=0.001$
- Inexact solvers at the right make rapid progress towards highly competitive models.

## **Statistical Performance: VAR Financial Models**

 Table 1: VAR prediction of log-returns of 9 stocks.

|         | OLS  | Lasso | MRCE | FES  | IKL  | OKL  | IOKL |
|---------|------|-------|------|------|------|------|------|
| WMT     | 0.98 | 0.42  | 0.41 | 0.40 | 0.43 | 0.43 | 0.44 |
| ХОМ     | 0.39 | 0.31  | 0.31 | 0.29 | 0.32 | 0.31 | 0.29 |
| GM      | 1.68 | 0.71  | 0.71 | 0.62 | 0.62 | 0.59 | 0.47 |
| Ford    | 2.15 | 0.77  | 0.77 | 0.69 | 0.56 | 0.48 | 0.36 |
| GE      | 0.58 | 0.45  | 0.45 | 0.41 | 0.41 | 0.40 | 0.37 |
| COP     | 0.98 | 0.79  | 0.79 | 0.79 | 0.81 | 0.80 | 0.76 |
| Ctgrp   | 0.65 | 0.66  | 0.62 | 0.59 | 0.66 | 0.62 | 0.58 |
| IBM     | 0.62 | 0.49  | 0.49 | 0.51 | 0.47 | 0.50 | 0.42 |
| AIG     | 1.93 | 1.88  | 1.88 | 1.74 | 1.94 | 1.87 | 1.79 |
| Average | 1.11 | 0.72  | 0.71 | 0.67 | 0.69 | 0.67 | 0.61 |

- Joint kernel learning better than scalar MKL and OKL alone.
- Dictionary of 117 Gaussian kernels (9 dimensions x 13 bandwidths)
- 13 kernels selected in IOKL.
- Comparisons: Independent OLS, Lasso, MRCE: Multivariate regression with error (inv) covariance estimation, FES: (Linear) Multivariate regression with Trace norm penalty on coefficients.

|            | Figure 1: Output kernel matrix ${f L}$ |       |      |      |      |                         |      |      |      |  |  |  |  |  |
|------------|----------------------------------------|-------|------|------|------|-------------------------|------|------|------|--|--|--|--|--|
| Walmart    | 0.26                                   | 0.11  | 0.60 | 0.76 | 0.26 | 0.17                    | 0.25 | 0.22 | 0.27 |  |  |  |  |  |
| Exxon      | 0.11                                   | 0.27  | 0.19 | 0.24 | 0.23 | 0.31                    | 0.16 | 0.17 | 0.31 |  |  |  |  |  |
| GM         | 0.60                                   | 0.19  | 2.22 | 2.67 | 0.82 | 0.35                    | 0.79 | 0.68 | 0.76 |  |  |  |  |  |
| Ford       | 0.76                                   | 0.24  | 2.67 | 3.72 | 0.99 | 0.52                    | 0.75 | 0.63 | 0.96 |  |  |  |  |  |
| GE         | 0.26                                   | 0.23  | 0.82 | 0.99 | 0.46 | 0.36                    | 0.38 | 0.35 | 0.48 |  |  |  |  |  |
| coPhillips | 0.17                                   | 0.31  | 0.35 | 0.52 | 0.36 | 0.55                    | 0.18 | 0.21 | 0.46 |  |  |  |  |  |
| Citigroup  | 0.25                                   | 0.16  | 0.79 | 0.75 | 0.38 | 0.18                    | 0.48 | 0.42 | 0.37 |  |  |  |  |  |
| IBM        | 0.22                                   | 0.17  | 0.68 | 0.63 | 0.35 | 0.21                    | 0.42 | 0.46 | 0.36 |  |  |  |  |  |
| AIG        | 0.27                                   | 0.31  | 0.76 | 0.96 | 0.48 | 0.46                    | 0.37 | 0.36 | 0.59 |  |  |  |  |  |
|            | Walmart                                | Exxon | GM   | Ford | GE   | ConocoPhillipsCitigroup |      | IBM  | AIG  |  |  |  |  |  |

# **Application:** Non-linear Granger Causality

- Given observations from an interconnected system of N distinct sources (nodes) of high-dimensional time series data, infer causal relationships between nodes.
- **Granger Causality** [Granger, 1980]: If past evolution of a subset of nodes  $A_i$  is predictive of the future evolution of node *i*, more so than the past values of *i* alone, then  $A_i$  is said to causally influence *i* collectively.
- Operationalizes causality by linking it to prediction. Caveat: causal insight is bounded by prediction accuracy.
- Sparsity a natural prior, particularly in a nonlinear functional sense.







# Non-linear Granger Causality: Gene Network Inference

- Data: Gene expression levels for full life-cycle of Drosophilia. 2397 genes in 35 functional groups.
- Goal: Infer causal relationships between Gene groups and within-group.



- Full kernel learning gives best predictive (causal) performance.
- Causal Graph reveals centrality of a group not found by linear models.

# Summary

- Goal: to make vector-valued RKHS methods more practical
  - Scalable Kernel learning techniques for separable matrix kernels
  - Selection and design of inexact solvers
  - Applications to high-dimensional causal inference problems
  - Generalized scalar MKL algorithms and theory
- Lots of open algorithm design problems:
  - Better solvers: pre-conditioned CG, first order SDPs
  - Extensions to non-separable matrix-valued kernels, .e.g.,  $\sum_{j} k_{j} \mathbf{L}_{j}$ ,  $\overrightarrow{k}(\mathbf{x}, \boldsymbol{z})_{ij} = k(T_{i}\mathbf{x}, T_{j}\boldsymbol{z})$ , Hessian of Gaussian kernel.
  - Scalability via randomized approximations.
  - Functional Regression and other non- $\mathbf{R}^n$  problems.
  - Connections to mean embeddings of conditional distributions.