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Problem Setting

• Estimate, non-parametrically, an unknown non-linear dependency,

f : X 7→ Y,

from labeled examples, where Y is a “structured” output space.

– “Structure”: multiple outputs; joint prediction more efficient.
– Y: Hilbert space structure 〈·, ·〉Y, ‖ · ‖Y. Focus on Y ⊆ Rn.
– Multivariate Regression, Multitask, Structured Output Learning.
– Jointly learn f and the structure on Y.

• Very natural to attempt to formulate as Tikhonov Regularization in
vector-valued Reproducing Kernel Hilbert Spaces (RKHS):

arg min
f∈H

‖yi − f(xi)‖2Y + λ‖f‖2H. (1)

IBM Research 1



Challenges with vector-valued RKHS methods

• Long history : Laurent Schwartz (1964), Burbea and Masani
(1984),. . . , MP(2005), but not as popular as scalar kernel methods.

• Kernel function
−→
k (x, z), which encodes input and output structure, is

matrix-valued. This makes model selection daunting.

– By contrast, widely popular Gaussian or Polynomial scalar-valued
kernels have just one hyperparameter.

• Computational Complexity: Ridge Regression in a general Rn-valued
RKHS with l labeled samples requires O(l3n3) time and O(l2n2)
storage.

• To be able to even consider vector-valued RKHS methods for an
application, we need scalable matrix-valued kernel learning.
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Contributions and Outline

• Function estimation in vector-valued RKHS dictionaries - generalize
scalar multiple kernel learning (MKL), structured sparsity algorithms.

• Full resolution of kernel learning for separable matrix-valued kernels.

– Eigendecomposition-free algorithms that orchestrate inexact solvers.

• Empirical Studies

– Statistical effectiveness of matrix-valued kernel learning.
– Computational effectiveness of using inexact solvers.

• Enable a new application: Non-linear Graphical Granger Causality.

• Generalization bounds based on Rademacher complexity for our
vector-valued hypothesis sets (analogous to scalar MKL results).
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Vector-valued RKHS [Michelli and Pontil, 2005]

• A Hilbert space H of functions mapping X → Y is a vector-valued

RKHS if there is a function
−→
k : X × X → L(Y) such that:

1. For all x ∈ X ,y ∈ Y, the function

δx,y(·) =
−→
k (.,x)y ∈ H (2)

2. For all f ∈ H, the reproducing property (RP) holds

〈f, δx,y〉H = 〈f(x),y〉Y ∀x ∈ X ,y ∈ Y (3)

• All niceness properties (theoretical and algorithmic) of RKHSs
ultimately flow from the reproducing property.

IBM Research 4



Tikhonov Regularization in Vector-valued RKHS

arg min
f∈H−→

k

1

l

l∑
i=1

‖f(xi)− yi‖22 + λ‖f‖2H−→
k

• Representer Theorem: solution is the sum of linear transformations.

f(·) =

l∑
i=1

−→
k (·,xi)αi, where αi ∈ Rn

• Huge RLS linear system of size ln× ln:(−→
K + λlInl

)
vec(CT ) = vec(YT )

where with
−→
Kij =

−→
k (xi,xj) ∈ Rn×n and C = [α1 . . .αl]

T ∈ Rl×n

IBM Research 5



Separable Matrix-valued Kernels

•
−→
k (x, z) = k(x, z)L

– k is a scalar input kernel function and L is an n× n symmetric
positive-definite output kernel matrix.

– Simplicity, universality, extensibility and potential for scalability.
– We use the notation HkL for the associated RKHS
– If f = (f1 . . . fn) ∈ HkL, then each scalar component fi ∈ Hk

• Regularization: ‖f‖2HkL =
∑
ij

(
L†
)
ij
〈fi, fj〉Hk where f = (f1 . . . fn).

– Suppose G is the adjacency matrix of an output similarity graph and
M is its Graph Laplacian. Then, for L = M†,

‖f‖2HkL =
1

2

n∑
i,j=1

‖fi − fj‖2HkGij +

n∑
i=1

‖fi‖2HkGii
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Ridge Regression with Separable Matrix-valued Kernels

• Regularized Least Squares solution can be written in two ways:

(K⊗ L + λlInl) vec(C
T ) = vec(YT ), (4)

KCL + λlC = Y. (5)

– O(l2 + n2) storage instead of O(l2n2)
– O(n3 + l3) time instead of O(l3n3).

• O(l3 + n3) Sylvester solver based on Eigendecomposition:

– K = TMTT where M = diag(σ1 . . . σl)
– L = SNST where N = diag(ρ1 . . . ρn)

– Solution: C = TX̃ST where X̃ij =
(TTYS)ij
σiρj+λ

.
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Output Kernel Learning

• An extended RLS problem: also optimize L over PSD cone.

arg min
f∈HkL,L∈Sn+

1

l

l∑
i=1

‖f(xi)− yi‖22 + λ‖f‖2H−→
k

+ ρ‖L‖2fro

• Dinuzzo et. al.’s (ICML, 2011) Block Coordinate Descent approach

– L fixed: Solve Sylvester equations for f by Eigendecomposition.
– f fixed: optimize over L ∈ Rn×n leading to a linear system, or over

L ∈ Sn leading to another Sylvester equation.

• Three issues with this approach:

– L updates hold only if f is solved exactly (Eigensolver).
– PSD constraints are not provably satisfied.
– Particularly expensive if scalar kernel is also being optimized.
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Learning over a vector-valued RKHS dictionary
• Goals: Fuller resolution of separable kernel learning problem with

eigendecomposition-free scalable solvers.
• Setup a dictionary of separable matrix-valued base kernels
DL = {k1L, . . . kmL} and define a space of functions expressible as
sums of component functions drawn from RKHSs in DL:

H(DL) =

f =

m∑
j=1

fj : fj ∈ HkjL

 (6)

• Functional sparsity of f : number of non-zero component functions.
• Our objective function (for large m, need RKHS structure again):

arg min
f∈H(DL),L∈Sn+(τ)

1

l

l∑
i=1

‖f(xj)− yi‖22 + λΩ[f ], (7)
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Variationally defined Regularizers Ω[f ]

• lp regularizers:

Ω[f ] = ‖f‖lp(H(DL)) = min
f :f=

∑
j fj

∥∥∥(‖f1‖Hk1L, . . . , ‖fm‖HkmL

)∥∥∥
p

– p→ 1: induces functional sparsity (generalization of group Lasso).

– p→ 2: non-sparse combinations.

• Broader class of regularizers that admit variational representations:

Ω(f) = min
η∈Rm

+

m∑
i=1

‖fi‖2HkiL
ηi

+ ω(η) (8)

For l1, the auxillary function ω(η) is indicator function for simplex.
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Learning convex combinations of base kernels

• Variational regularizers relate non-differentiable mixed norms to
weighted sum of RKHS norms, which further is equivalent to learning
with a single kernel given by a convex combination of base kernels.

Proposition 1. The function:
−→
k η =

∑m
i=1 ηi

−→
k i, is the reproducing

kernel of the sum space, with norm:

‖f‖2H−→
k η

= min
f=

∑m
j=1 fi,fj∈H−→k j

m∑
j=1

‖fj‖2

ηj
.

• Important for handling large m.
• Generalizes analogous results in the scalar MKL literature.
• Joint optimization: scalar kernel weights η, L and f ∈ HkηL.
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Spectahedron Constraints on Output Kernel L

• L ∈ Sn+(τ) - a semi-definite analogue of the simplex.

Sn+(τ) = {X ∈ Sn+|trace(X) ≤ τ}

• Rationale (besides low-rankness encouraged by trace norm):

– Can use a specialized sparse SDP solver whose iterations involve
computing a single extremal eigenvector of the gradient inexactly.

– Implies that a Conjugate Gradient iterative solver for f optimization
encounters numerically well-conditioned problems.

– Trace constraint parameter naturally appears in Generalization
bounds based on Rademacher complexity.
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Block Coordinate Descent

• Finite dimensional version of the optimization problem:

arg min

C∈Rn×l
,L∈Sn+(τ),η∈Rm

+

1

l
‖KηCL−Y‖2F

+λ trace
(
CTKηCL

)
+ ω(η). (9)

– Optimize C with Conjugate-Gradient Sylvester solver.
– Optimize η using closed form update rules (akin to scalar MKL).
– Optimize L using a specialized sparse SDP solver.

• Vector-valued Prediction function:

f?(x) = LCT [kη(x,x1) . . . kη(x,xl)]
T (10)
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Sylvester Solver based on Conjugate Gradient

• Use iterative CG solver directly on:

(Kη ⊗ L + λlInl) vec(C
T ) = vec(YT ) (11)

– can exploit warm-starts from previous solution.
– coefficient matrix need not be materialized
– fast matrix-vector products O(nl(l + n)):

(Kη ⊗ L + λlInl)vec(C
(k)T ) = vec(KηC

(k)L + λlC(k)) (12)

– can exploit structure, e.g., K is low-rank or sparse
– can be used for more general problems involving

∑
iKi ⊗ Li

IBM Research 14



CG Sylvester Solver
Proposition 2 (Convergence Rate for CG Sylvester solver). Assume l1
norm for Ω. Let C(k) be the CG iterate at step k, C? be the optimal
solution (at current fixed η and L) and C(0) be the initial iterate
(warm-started from previous value). Then,

‖C(k) −C∗||F ≤ 2
√
φ

(√
φ− 1√
φ+ 1

)k
||C(0) −C∗||F , (13)

where φ = 1 + γτ
lλ with γ = maxi ‖Ki‖2. For dictionaries involving

only Gaussian scalar kernels, the condition number is bounded as:

φ ≤ 1 +
τ

λ
, (14)

i.e., the convergence rate depends only on the relative strengths of
regularization parameters λ, τ .
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Sparse SDP solver for L [Hazan, 2008]

• Adaptation: bounded trace, exact line search, analysis.
• Inexact eigenvector computation via truncated power method.
• Proposition: Assume l1 norm. For k ≥ 16(τγ)2/ε,
g(L(k+1))− g(L?) ≤ ε/2 where γ = maxi ‖Ki‖2.
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Cheap iterations using inexact numerical optimization
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Eigendecomposition

• Tradeoff: Many, cheap iterations versus few, expensive iterations.
• Caltech101: 3060 training, 1355 test images, p = 1.7, λ = 0.001
• Inexact solvers at the right make rapid progress towards highly

competitive models.
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Statistical Performance: VAR Financial Models

Table 1: VAR prediction of log-returns of 9 stocks.

OLS Lasso MRCE FES IKL OKL IOKL
WMT 0.98 0.42 0.41 0.40 0.43 0.43 0.44
XOM 0.39 0.31 0.31 0.29 0.32 0.31 0.29
GM 1.68 0.71 0.71 0.62 0.62 0.59 0.47
Ford 2.15 0.77 0.77 0.69 0.56 0.48 0.36
GE 0.58 0.45 0.45 0.41 0.41 0.40 0.37
COP 0.98 0.79 0.79 0.79 0.81 0.80 0.76
Ctgrp 0.65 0.66 0.62 0.59 0.66 0.62 0.58
IBM 0.62 0.49 0.49 0.51 0.47 0.50 0.42
AIG 1.93 1.88 1.88 1.74 1.94 1.87 1.79

Average 1.11 0.72 0.71 0.67 0.69 0.67 0.61

• Joint kernel learning better than scalar MKL and OKL alone.
• Dictionary of 117 Gaussian kernels (9 dimensions x 13 bandwidths)
• 13 kernels selected in IOKL.
• Comparisons: Independent OLS, Lasso, MRCE: Multivariate regression

with error (inv) covariance estimation, FES: (Linear) Multivariate
regression with Trace norm penalty on coefficients.
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Figure 1: Output kernel matrix L
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Application: Non-linear Granger Causality

• Given observations from an interconnected system of N distinct sources
(nodes) of high-dimensional time series data, infer causal relationships
between nodes.

• Granger Causality [Granger, 1980]: If past evolution of a subset of
nodes Ai is predictive of the future evolution of node i, more so than
the past values of i alone, then Ai is said to causally influence i
collectively.

• Operationalizes causality by linking it to prediction. Caveat: causal
insight is bounded by prediction accuracy.

• Sparsity - a natural prior, particularly in a nonlinear functional sense.
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Non-linear Granger Causality: Gene Network Inference

• Data: Gene expression levels for full life-cycle of Drosophilia. 2397
genes in 35 functional groups.
• Goal: Infer causal relationships between Gene groups and within-group.
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– Full kernel learning gives best predictive (causal) performance.
– Causal Graph reveals centrality of a group not found by linear models.
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Summary

• Goal: to make vector-valued RKHS methods more practical
– Scalable Kernel learning techniques for separable matrix kernels
– Selection and design of inexact solvers
– Applications to high-dimensional causal inference problems
– Generalized scalar MKL algorithms and theory

• Lots of open algorithm design problems:
– Better solvers: pre-conditioned CG, first order SDPs
– Extensions to non-separable matrix-valued kernels, .e.g.,

∑
j kjLj,−→

k (x, z)ij = k(Tix, Tjz), Hessian of Gaussian kernel.

– Scalability via randomized approximations.
– Functional Regression and other non-Rn problems.
– Connections to mean embeddings of conditional distributions.
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