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Abstract

The rapid construction of supervised text clas-
sification models is becoming a pervasive need
across many modern applications. To reduce
human-labeling bottlenecks, many new statistical
paradigms (e.g., active, semi-supervised, transfer
and multi-task learning) have been vigorously pur-
sued in recent literature with varying degrees of
empirical success. Concurrently, the emergence of
Web 2.0 platforms in the last decade has enabled a
world-wide, collaborative human effort to construct
a massive ontology of concepts with very rich, de-
tailed and accurate descriptions. In this paper we
propose a new framework to extract supervisory in-
formation from such ontologies and complement it
with a shift in human effort from direct labeling
of examples in the domain of interest to the much
more efficient identification of concept-class asso-
ciations. Through empirical studies on text catego-
rization problems using the Wikipedia ontology, we
show that this shift allows very high-quality models
to be immediately induced at virtually no cost.

1 Introduction

The explosion of user-generated content by way of blogs and
Twitter has given rise to a host of different applications oftext
categorization, collectively referred to as Social Media Ana-
lytics [Melville et al., 2009], to glean insights from this sea
of text. The very dynamic nature of social media presents the
added challenge of requiring many classifiers to be built on
the fly, e.g., building a classifier to identify relevant tweets on
the latest smartphone fad, which may be critical for Market-
ing and PR. As performance of automatic text categorization
methods is gated by the amount of supervised data available,
there have been many directions explored to get the most
out of the available data and human effort. These include
(1) exploiting unlabeled data through semi-supervised learn-
ing [Chapelleet al., 2005], (2) having the learner select in-
formative examples to be labeled via active learning[Settles,
2009], (3) alternative forms of supervision, such as labeling
features[Druck et al., 2008], (4) learning from data in re-
lated domains through transfer learning[Blitzer et al., 2007],

and (5) guided learning, where human oracles use their do-
main expertise to seek instances representing the interesting
regions of the problem space[Attenberg and Provost, 2010].
All of these approaches still rely on human experts provid-
ing labels forindividual examples or features, and improve
with more labels. In this paper we propose an approach to
highly scalable supervision, where a very small fixed amount
of human effort can be translated to supervisory information
on many unlabeled examples, at no additional cost.

Our approach to scalable supervision is enabled by the
staggering growth in knowledge-bases and ontologies, gener-
ated through collective human effort or semi-automatic pro-
cesses, such as Wikipedia, Word Net and the Gene Ontol-
ogy. While these ontologies were not constructed with a spe-
cific classification task in mind, the vast amounts of domain-
specific and/or general knowledge can still be exploited to im-
prove the way we build supervised models for a given task.
In the traditional supervised learning paradigm, supervisory
information is provided by labeling examples, and classifiers
are induced using such labeled examples. In this paper we
propose a shift toConcept Labeling,where instead of labeling
individual examples, we provide a mapping between concepts
in an ontology to the target classes of interest. The process
of mapping unlabeled documents (examples) into concepts in
an ontology can be fully-automated, e.g., mapping keywords
in a document to corresponding Wikipedia entries[Ferragina
and Scaiella, 2010]. Hence, such a mapping requires no addi-
tional human labor. Thus instead of labeling individual doc-
uments, human effort is better spent on simply labeling con-
cepts in the ontology with the classes of interest, e.g. mapping
the Wikipedia categoriesoncologyandanatomical pathology
to the medical publication class onneoplasm.

Since most unlabeled documents can be automatically
mapped to concepts in a given ontology, we can use the few
provided concept labels to then automatically label available
unlabeled documents. All of this comes at a fixed, one-
time cost of providing ontology-to-class mappings via con-
cept labels. Once we automatically generate ontology-based
labeled documents, we are free to apply any text categoriza-
tion method of choice to build a classifier that generalizes
to unseen (test) documents. Concept Labeling should not
be confused with previous approaches to using ontologies
in classification, which have focused on enhancing the ex-
isting instance representation with new ontology-based fea-



tures[Gabrilovich and Markovitch, 2006]. Instead, we are
proposing an alternative use of human annotation effort in
labeling concepts in an ontology, which we demonstrate is
more cost-effective than labeling documents, and induces
higher accuracy classifiers than several other approaches.

2 Concept Labeling Framework
Let us begin by recalling the familiar text categorization set-
ting. A large number of documents,{di}ni=1, is typically
collected by an automated process such as a web crawler.
Given a documentd, we assume that there is an unknown
true conditional distributionP (y|d) over binary categories,
y ∈ {−1, 1}1. By human annotation effort, a small subset of
documents are labeled by samplingyi ∼ P (y|di), i = 1 . . . l,
where the number of labeled documents,l, is typically much
smaller than the total number of documents collected. Next,
a representation for documents is chosen. Letψbow(d) repre-
sent the popular bag-of-words representation for documentd.
A supervised learning model can now be set up as a proxy for
the underlying true distribution. Such a model may broadly
be specified as follows,

P (y|d) = P (y|ψbow(d), α) (1)

where the model parametersα are tuned to fit the labeled
examples while being regularized to avoid overfitting. The
dominant cost and the primary bottleneck in this end-to-end
process is the collection of human labeled data.

We contrast this traditional process with a new framework
that assumes the availability of an ontologyO = (V,E, ψont)
which we formalize in terms of a triplet: (i) a set of con-
ceptsV , (ii) a graph of directed edgesE that captures inter-
relationships between concepts, i.e., an edge(v1, v2) ∈ E
indicates thatv2 is a sub-concept ofv1, and (iii) a feature
functionψont that associates each concept inV to a set of
numerical attributes. We will shortly make this specification
concrete for the Wikipedia ontology in our text categorization
system. We now assume thatcategories are conditionally in-
dependent of documents, given the concepts of the ontology.
In other words, in comparison to Eq. 1, we instead have,

Pont(y|d) =
∑

v∈V

P (y, v|d) =
∑

v∈V

P (v|d)P (y|v, β) (2)

We refer toP (v|d) as theDocuments-to-Ontologydistribu-
tion, and toP (y|v, β) as theOntology-to-Classdistribution.
These distributions are modeled separately in our framework
and take the graph structure of the ontology into account. We
propose an unsupervised construction of the documents-to-
ontology distribution, but a supervised construction of the
ontology-to-class distribution. In other words, we require hu-
man effort to instead be expended in supplying a labeled set
{vi, yi}

l
i=1 whereyi ∼ P (y|vi). The model parametersβ

are learnt using labeled data while respecting concept rela-
tionships. If labeling a concept is much cheaper than labeling
a document, and if Eq. 2 can provide an accurate representa-
tion of the true underlying distribution, then it is clear that our
framework can lead to a much more efficient learning mech-
anism in comparison to the traditional process. We present

1Our methods also generalize to multiclass problems.

strong empirical evidence that supports this statement. We
now describe the three main steps of our framework in more
detail.

2.1 Documents-to-Ontology Distribution
As part of the specification of the Ontology, we define a fea-
ture functionψont that extracts a set of attributes for any given
conceptv, as well as any given documentd. The role ofψont

is to provide a feature space in which the similarity between
documents and concepts can be measured. LetNk(v) denote
thek-neighborhood of the conceptv i.e., the set of concepts
connected tov by a path of length uptok (We usedk = 3
in our experiments), comprising of directed edges inE. We
define the documents-to-ontology distribution as follows,

P (v|d) ∝
∑

q∈Nk(v)

ψont(d)
Tψont(q) (3)

Note that this distribution naturally takes the graph struc-
ture of concepts into account. The definition ofψont is do-
main/task independent and essentially specifies a general pro-
cedure to match documents against the ontology. Therefore,
this step is the unsupervised component of our framework.
Note that implicit in the definition above is the assumption
that documentd is not orthogonal toall the conceptsv ∈ V ,
with respect to the feature space induced byψont. This as-
sumption allows similarity scores to be correctly normalized
into a probability distribution. Documents that do not satisfy
this assumption are considered out of coverage in the model.

2.2 Ontology-to-Class Distribution
The ontology-to-class distribution is estimated from a labeled
sample{vi, yi}li=1 and is the only component of our system
where human supervision is expected. In comparison to read-
ing, comprehending and labeling documents, the rapid iden-
tification of concept-class associations can be a much more
effortless and time-efficient exercise. The task of labeling
graphs from partial node labeling has received significant
recent attention in machine learning, with rigorous regular-
ization frameworks to handle both undirected[Belkin et al.,
2004] and directed cases[Zhou et al., 2005]. These meth-
ods may be seen as smooth diffusions or random-walk based
propagation of labeled data along the edges of the graph. In
particular, letp be a vector2 such thatpi = P (y = 1|vi).
Then one can solve the following optimization problem,

p
⋆ = argmin

p

−
1

l

l
∑

i=1

log

[

p
1+yi

2

i (1− pi)
1−yi

2

]

+ γpTLp

subject to: 0 ≤ pi ≤ 1, i = 1 . . . |V |

where the first term is negative log-likelihood and the second
term measures smoothness of the distribution with respect to
the ontology as measured using the Laplacian matrix[Zhou
et al., 2005] of the directed graph(V,E) with γ > 0 as a
real-valued regularization parameter.

Another simple and very effective choice used in our exper-
iments is a“hard” label propagationwhereP (y = 1|v) = 1

2The parametersβ in Eq. 2 can be identified withp



for all v exclusively in the neighborhood of a positively la-
beled concept node,P (y = −1|v) = 1 for all v exclusively
in the neighborhood of a negatively labeled concept node, and
P (y = 1|v) = 0.5 for the remaining concepts.

2.3 Final Classifier Induction from Unlabeled Data
The steps described above allow a documents-to-class distri-
bution 2 to be estimated with low-cost concept-level supervi-
sion. We can now define the ontology-based classifier,

O(d) = argmax
y∈{−1,+1}

Pont(y|d) (4)

Note that ifPont(y = 1|d) = Pont(y = −1|d) = 0.5, then
O(d) is not uniquely defined. This can happen, for example,
whenP (v|d) > 0 impliesP (y = 1|v) = P (v = −1|v), i.e,
the documentd matches concepts where the class distribu-
tions are evenly split. Documents for which the distribution
in Eq. 3 cannot be properly defined, or for whichO(d) is not
uniquely defined are considered out of coverage. LetC be the
set of documents that have coverage. We can now take our
entire original unlabeled collection,{di}ni=1 and generate a
labeled set{(di, O(di)) : di ∈ C}. In the final step of our
framework, we use this labeled set, obtained using concept
labeling instead of direct document labeling, to train a classi-
fier via Eq. 1. This is done for the following reasons: (1) this
allows generalization to test documents that are not covered
by the ontology-based classifier (Eq. 4), and (2) even if the
ontology-based classifier only weakly approximates the true
underlying Bayes optimal classifier, the labels it generates
can induce a strong classifier in the bag-of-words represen-
tation. This is because highly domain-specific word depen-
dencies with respect to classes, not represented in ontology-
specific attributes, may be picked up during the process of
training. We refer to the traditional process asdocument la-
beling and contrast it with ourconcept-labelingframework.
The direct use of Eq. 4 is referred to asontology-based clas-
sification.

3 System Overview
We now describe a text categorization system that implements
our framework using the English-only subset of Wikipedia.
As a directed graph, our Wikipedia Ontology comprises of
about4.1 million nodes with more than20 million edges.
About 85% of the nodes do not have any subcategories and
are standalone concepts. Each concept has an associated web-
page with a title and a detailed text description. We setup the
feature mapψont using the vocabulary space of|V | concept
titles. For any conceptv, we define a binary vectorψont(v)
which is valued1 for the title of v and 0 otherwise. For
any documentd, the vectorψont(d) is a “bag-of-titles” fre-
quency vector obtained by indexingd over the space of con-
cept titles. Our indexing is robust to minor phrase variations,
i.e., any unigram, bigram or trigram token that redirects to
a Wikipedia page is indexed against the title of that page.
Then, the documents-to-ontology distribution, Eq. 3,P (v|d),
is proportional to the number of occurences of titles in the
document for all concepts in the neighborhood ofv. This un-
supervised step of mapping documents onto the ontology is

Figure 1: An illustrative example showing the unsupervised
mapping of terms in a document to part of an ontology, spec-
ifying the documents-to-ontology distribution (Eq. 3). Two
concepts have been labeled as + (nervous system) and - (neo-
plasm) from which an ontology-to-class distribution is in-
duced. Based on Eq. 4 this document would be labeled as
neoplasm.

schematically shown in Figure 1. To specify the ontology-
to-class distribution, we allow the user to search Wikipedia
or browse the category tree3 and supply a collection of la-
beled concepts. We induce the ontology-to-class distribution
by identifying entities from the Wikipedia ontology in the
documents to be labeled. If we find more entities from the
sub-tree corresponding to Class 1 as opposed to Class 2, we
label the document as Class 1. If no entities belonging to the
Wikipedia sub-tree of either class are found in the document,
the document cannot be labeled. This procedure is used to la-
bel a large number of labeled data from unlabeled examples,
with which we train a multinomial Naive Bayes classifier with
respect to bag-of-words representation, as in Eq. 1

4 Empirical Evaluation
In this section we describe our datasets, followed by experi-
ments and discussion of results.

4.1 Datasets
We evaluated the effectiveness of our methods on a diverse
collection of text categorization problems spanning social
media content, medical articles and newsgroup messages.
Smartphones: An important application for text classifica-
tion is filtering social media streams such as blogs and Twitter
for relevant content. Human labeling in such scenarios is pro-
hibitive since several such relevance models may need to be
rapidly and simultaneously built. With on the order of 100M
public tweets in Twitter per day, there is a strong need to pro-
vide a filtering capability to allow users to see only tweets
relevant to a subject of interest. Many tools, including Twit-
ter itself, offer the capability to search tweets using keywords.
However, many broad subjects cannot be exhaustively char-
acterized with a small set of easily identifiable keywords ex-
pected to be present in short pieces of text with less than 140
characters. This makes it necessary to build text classification

3http://en.wikipedia.org/wiki/Special:CategoryTree



models. Here, we consider the task of identifying tweets dis-
cussing smartphones, for which we created a labeled dataset
consisting of 420 positive and negative (notsmartphone) ex-
amples. The positive examples were labeled independently
by three people. The negative examples were randomly sam-
pled from an archive of over 1M tweets. For this dataset we
report results of 10-fold cross-validation.
20 newsgroups: The task here is to classify messages be-
longing to various newsgroups. We pose several binary clas-
sification tasks among closely related4 newsgroups. We use
the standard train-test splits provided with this data.
ohsumed.91: This collection is taken from the Ohsumed
corpus5 which contains MEDLINE documents for the year
1991. The task is to assign documents to one of the four most
frequent MeSH disease categories. For our experiments, we
removed documents that belonged to more than one category.
The collection was then split into equal sized train–test sets.

4.2 Experimental Methodology
The concept labels we used in our experiments are listed in
Table 1. For each class we list the Wikipedia categories (con-
cepts) that we associate with it. These categories were as-
signed by simply searching for the class names in Wikipedia
and browsing the related Wikipedia ontology. Note that, most
concept labels are fairly obvious, and we assigned at most 4
Wikipedia categories to a class, which requires less than 5
minutes of human supervision per class.

The best performance we can expect on these datasets is
using human labels on all available training examples. We
report results on using Naive Bayes with human labeled data,
which we refer to asDocument Labeling.For completeness
we also report results using SVMs for the same data. We
compare Concept Labeling to these benchmark to see how
close to Document Labeling we can get. In addition, we com-
pare Concept Labeling to 3 other baselines. For the first base-
line, Wiki Transfer,we take all the pages in Wikipedia corre-
sponding to the categories listed in Table 1, and use these as
training examples with Naive Bayes for each binary classifi-
cation task. In addition to providing labels for training data,
the same approach in Concept Labeling can be used to label
test documents (as in Eq. 4). Since not all documents can be
mapped to Wikipedia categories that are relevant to our tasks,
we would expect that such an approach will leave some test
examples unlabeled. However, we can still measure the accu-
racy on the test examples that can be labeled. We refer to this
baseline asOntology-only Classification(OC). Finally, we
also compare to an alternative approach to using little supervi-
sion via semi-supervised learning. In particular, for eachdata
set we use 100 hand-labeled examples, and build aTransduc-
tive SVM(TSVM)[Joachims, 1999], treating the remaining
examples in the training set as unlabeled.

4.3 Results
All our results are summarized in Table 2. First, we note that
training on all hand-labeled examples, Document Labeling,
using Naive Bayes or SVMs does not make much difference,

4defined by http://people.csail.mit.edu/jrennie/20Newsgroups
5http://ir.ohsu.edu/ohsumed/ohsumed.html

Target Class Wikipedia Categories
autos Automobiles
motorcycles Motorcycles, Motorcycle technology,

Motorcycling
baseball Baseball
hockey Ice hockey
guns Firearms, Weapons, Ammunition, Gun

politics
mideast Middle East, Western Asia, North

Africa
pc IBM PC compatibles, IBM personal

computers
mac Macintosh computers, Macintosh plat-

form
cardiology Cardiovascular system
immunologic Immunology
neoplasm Oncology, Anatomical pathology
nervous system Nervous system
smartphones Smartphones

Table 1: Concept labels: Labels for Wikipedia categories

with mean accuracies being within1% of each other. For
consistency, we will use Naive Bayes as the benchmark for
discussion, since the other systems being compared also use
the same base classifier. The results show that on average
we are able to achieve93% of the predictive power we can
get from hand-labeling thousands of examples. This is re-
markable since we needed to provide only a simple mapping
between a few Wikipedia categories and the corresponding
classes to achieve this.

Given that we are providing labels to Wikipedia categories,
an obvious alternative to Concept Labeling, is using the docu-
ments in these Wikipedia categories directly to induce a clas-
sifier. This method, Wiki Transfer, is equivalent to the sim-
ple approach to transfer learning, where labeled documents
in a source domain are used to train a classifier for the tar-
get domain. While this approach actually does outperform
Concept Labeling on two data sets, in general it performs
quite poorly. This is because the distribution of documentsin
Wikipedia can be quite different from the distribution in our
target domains. So, in order to make such a method effective,
more sophisticated approaches to account for the covariance
shift [Bickel et al., 2009] would need to be employed.

Ontology-only Classification (OC, Eq. 4), where the
document-to-ontology and ontology-to-class distributions are
used to directly label test examples, performs better than
naive transfer learning with Wiki Transfer. However, this ap-
proach suffers from the drawback that it may not be able to
label all examples. If a document does not contain terms that
can be mapped to the ontology, or if the mapped terms are not
relevant to the target classes, then OC is unable to provide a
label. In Table 2, the columnCoverage Percentagelists the
percentage of test examples for which OC was able to provide
a label, which can be as low as65%. For labeling a training
set, this is not a significant problem, since we can still build
a classifier with fewer examples. However, if the application
requires that all test instances be labeled, then Ontology-only
Classification is not a feasible solution. We also report theac-



Data Set Document Labeling Concept Wiki Coverage Ontology-only TSVM
NB SVM Labeling Transfer Percentage Classification

baseball-hockey 96.61 93.72 96.61 83.04 81.53 78.26 90.70
guns-mideast 98.38 96.89 96.89 74.32 82.70 76.35 94.59
cardiology-immunologic 96.35 96.36 95.96 63.46 91.15 82.50 93.65
immunologic-nervous system 93.13 94.89 92.61 79.92 92.43 83.45 90.32
immunologic-neoplasm 92.53 92.71 91.87 41.11 92.03 88.37 92.71
cardiology-neoplasm 96.79 97.17 91.67 95.40 89.70 81.07 95.74
nervous system-neoplasm 95.52 96.43 87.94 63.09 91.48 79.88 90.99
cardiology-nervous system 84.49 86.53 78.77 58.70 89.60 75.31 73.27
pc-mac 89.32 88.42 77.22 74.77 64.73 55.98 78.38
autos-motorcycles 96.22 95.97 74.06 83.37 79.35 58.06 76.07
smartphones 89.27 96.54 77.84 33.89 100.00 85.93 90.11
Mean Accuracy 93.51 94.44 87.62 68.28 87.15 77.17 87.87

Table 2: Comparing Concept Labeling to other benchmarks based on classification accuracy

curacy of OC on just the examples for which it can provide a
label. We see that even on the partial set of examples labeled,
the accuracy is not very high compared to the other baselines.
However, what is notable is that, on average, training a clas-
sifier on a subset (87%) of training examples, which are la-
beled with moderate accuracy (77%), we are able to build a
classifier with higher accuracy (88%) through Concept Label-
ing. This observation highlights the advantage of inducinga
classifier on weakly-labeled training examples, which leads
to better generalization perfomance on unseen test examples,
over using the noisy labeling process on the same examples.

Further, when compared to Transductive SVMs, Concept
Labeling performs comparably on average, with TSVMs pro-
ducing higher accuracies on 6 of 11 datasets. Recall, that
for TSVMs we provided 100 hand-labeled examples, which
would require substantially more annotation time than the few
minutes it takes to provide the labels in Table 1. Nevertheless,
these results confirm that both Concept Labeling and semi-
supervised learning are good alternatives to getting the most
out of your data and human effort. Furthermore, they are not
mutually exclusive. An effective strategy could be to labela
few high-confidence training examples by Concept Labeling
and then using a semi-supervised approach to leverage the
remaining unlabeled examples.
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Figure 2: Learning Curve for BASEBALL vs HOCKEY

The benefits of using Concept Labeling are clearly demon-
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Figure 3: Learning Curve for GUNS vs MIDEAST

strated in Figures 2 and 3. Here we present learning curves,
with the performance of Document Labeling with increasing
amounts of training data. In the case of Concept Labeling, we
have a fixed number of concept labels, and the x-axis corre-
sponds to the number of unlabeled documents presented for
labeling. Note that, since, not all unlabeled documents are
labeled as a result of Concept Labeling, the models built with
Concept Labeling are using fewer training documents. The
points on this curve demonstrate the improvement in gen-
eralization of Concept Labeling with increasing number of
documents. However, labels for these additional documents
are still based on the fixed initial cost of labeling concepts.
The plots highlight the cost-effectiveness of Concept Label-
ing over Document Labeling. For instance, Fig. 2 shows that
with only 2 concept labels can build a classifier that is as ac-
curate as hand-labeling approximately 1200 documents.

Finally, we note that the negative class (not smartphone)
in the smartphoneclassification task is modeled in a differ-
ent fashion from other datasets. In principle, everything that
excludes smartphones is included in this class. The ontology
corresponding to such a class is very huge and is very difficult
to model explicitly. For the Wiki Transfer baseline, we ran-
domly picked1000 documents from Wikipedia as the training
documents for this class. We were able to obtain only an ac-
curacy of34% using this baseline method. For Ontology-only
Classification any tweet that does not have a mapping to the



smartphone ontology was classified as the negative class. For
most applications, OC cannot produce a label for all test ex-
amples. However, forsmartphones, OC has 100% coverage
by design. In such cases, OC can be a better alternative than
inducing a classifier through Concept Labeling, as demon-
strated by thesmartphoneresults.

5 Related Works
One of the earliest instances of exploiting external data
sources for supervised learning was in using WordNet syn-
onyms and hypernyms[Scott and Matwin, 1998] to build
enhanced document representations. In the last few years,
the proliferation of collaboratively created, high quality Web
2.0 resources, like Wikipedia, led to several efforts to utilize
them for classification[Gabrilovich and Markovitch, 2006;
Wang and Domeniconi, 2008]. [Banerjee, 2007] showed
that using features in the Wikipedia space makes a classi-
fier more robust in an inductive transfer setting.[Gupta
and Ratinovf, 2008] use documents from the Open Direc-
tory Project and Yahoo Answers along with Wikipedia to
achieve classification accuracies higher than using eitherone
of those resources. In all these cases, the user provides la-
bels on the original document space and significant number
of labels are required to achieve good classification accuracy.
[Janik and Kochut, 2008] directly classify documents based
on Wikipedia categories using a thematic graph construction.
Their approach is conceptually similar to our Ontology-only
Classification baseline and as we show in Sec. 4, training a
classifier is always better to obtain complete coverage and
higher accuracy through generalization.

6 Conclusions
In this paper, we propose a novel approach to rapidly build-
ing new text categorization models, by shifting human an-
notation effort from the traditional labeling of documents, to
the more cost-effective labeling of concepts in an ontology.
We formalized this general framework for Concept Label-
ing, and presented a specific instantiation using Wikipediaas
our ontology, applied to text classification in several domains.
Our empirical results show that very little, high-level supervi-
sion, in the form of concept labels lead to classifiers that are
comparable to using a large number of labeled documents.
On average our models can achieve94% of the accuracy of
individually-labeled documents with a very small fractionof
the effort. As such, Concept Labeling is a more efficient use
of human resources, enabling us to swiftly build classifiersfor
many new domains. We also demonstrated that our approach
produces models that are comparable to exploiting unlabeled
examples through semi-supervised learning, and better than
using related labeled documents via a naive transfer learning
approach. Given that Concept Labeling and semi-supervised
learning are complimentary paradigms, exploring their com-
bination is a promising avenue for future work.
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