
1 Newton Methods for Fast Solution of Semi-

supervised Linear SVMs

Vikas Sindhwani vikass@cs.uchicago.edu

Department of Computer Science, University of Chicago

Chicago, IL 60637, USA

S. Sathiya Keerthi keerthi@yahoo-inc.com

Yahoo! Research

Burbank, CA 91504, USA

In this chapter, we present a family of semi-supervised linear support vector

classifiers that are designed to handle partially-labeled sparse datasets with

possibly very large number of examples and features. At their core, our

algorithms employ recently developed Modified Finite Newton techniques.

We provide a fast, multi-switch implementation of linear Transductive SVM

(TSVM) that is significantly more efficient and scalable than currently used

dual techniques. We present a new Deterministic Annealing (DA) algorithm

for optimizing semi-supervised SVMs which is designed to alleviate local

minima problems while also being computationally attractive. We conduct

an empirical study on several classification tasks which confirms the value

of our methods in large scale semi-supervised settings. Our algorithms are

implemented in SVMlin, a public domain software package.

1.1 Introduction

Consider the following situation: In a single web-crawl, search engines like

Yahoo! and Google index billions of documents. Only a very small fraction of

these documents can possibly be hand-labeled by human editorial teams and

assembled into topic directories. In information retrieval relevance feedback,

2 Newton Methods for Fast Solution of Semi-supervised Linear SVMs

a user labels a small number of documents returned by an initial query as

being relevant or not. The remaining documents form a massive collection

of unlabeled data. Despite its natural and pervasive need, solutions to the

problem of utilizing unlabeled data with labeled examples have only recently

emerged in machine learning literature. Whereas the abundance of unlabeled

data is frequently acknowledged as a motivation in most papers, the true

potential of semi-supervised learning in large scale settings is yet to be

systematically explored. This appears to be partly due to the lack of scalable

tools to handle large volumes of data.

In this chapter, we propose extensions of linear Support Vector Machines

(SVMs) for semi-supervised classification. Linear techniques are often the

method of choice in many applications due to their simplicity and inter-

pretability. When data appears in a rich high-dimensional representation,

linear functions often provide a sufficiently complex hypothesis space for

learning high-quality classifiers. This has been established, for example, for

document classification with linear SVMs in numerous studies.

Our methods are motivated by the intuition of margin maximization over

labeled and unlabeled examples. The key idea is to bias the classification

hyperplane to pass through a low data density region keeping points in each

data cluster on the same side of the hyperplane while respecting labels.

This formulation, first proposed in (Vapnik, 1998) as the Transductive SVM

(TSVM), uses an extended SVM objective function with a non-convex loss

term over the unlabeled examples to implement the cluster assumption in

semi-supervised learning: that points in a cluster should have similar labels;

the role of unlabeled data is to identify clusters and high density regions

in the input space. Due to non-convexity, several optimization procedures

have been proposed (Joachims, 1998; Bennett and Demirez, 1998; Fung

and Mangasarian, 2001; Chapelle and Zien, 2005; Collobert et al., 2006;

Sindhwani et al., 2006). In the discussion below, by Transductive SVM

(TSVM), we specifically refer to the label-switching procedure of (Joachims,

1998). The popular implementation of this procedure in SVMlight software1

is considered state-of-the-art in text categorization, even in the face of

increasing recent competition.

We highlight the main contributions of our work.

1. We outline an implementation for a variant of TSVM (Joachims, 1998)

designed for linear semi-supervised classification on large, sparse datasets.

As compared to currently used dual techniques (e.g., as implemented in

SVMlight), our method effectively exploits data sparsity and linearity of the

1. see http://svmlight.joachims.org

1.2 Modified Finite Newton Linear l2-SVM 3

problem to provide superior scalability. Additionally, we propose a multiple

switching heuristic that further improves TSVM training by an order of

magnitude. These speed enhancements turn TSVM into a feasible tool for

large scale applications.

2. We propose a novel algorithm for semi-supervised SVMs inspired from

Deterministic Annealing (DA) techniques. This approach generates a family

of objective functions whose non-convexity is controlled by an annealing pa-

rameter. The global minimizer is parametrically tracked in this family. This

approach alleviates the problem of local minima in the TSVM optimization

procedure which results in better solutions on some problems. A computa-

tionally attractive training algorithm is presented that involves a sequence

of alternating convex optimizations.

3. We conduct an experimental study on many high-dimensional document

classification tasks involving hundreds of thousands of examples. This study

clearly shows the utility of our tools for very large scale problems.

The modified finite Newton algorithm of Keerthi and DeCoste (2005) (de-

scribed in section 1.2) for fast training of linear SVMs is a key subroutine for

our algorithms. Semi-supervised extensions of this algorithm are presented

in sections 1.3 and 1.4. Experimental results are reported in section 1.5.

Section 1.6 contains some concluding comments.

All the algorithms described in this chapter are implemented in a public

domain software, SVMlin (see section 1.5) which can be used for fast training

of linear SVMs for supervised and semi-supervised classification problems.

The algorithms presented in this chapter are described in further detail,

together with pseudocode, in Sindhwani and Keerthi (2005).

1.2 Modified Finite Newton Linear l2-SVM

The modified finite Newton l2-SVM method (Keerthi and DeCoste, 2005)

(abbreviated l2-SVM-MFN) is a recently developed training algorithm for

linear SVMs that is ideally suited to sparse datasets with large number of

examples and possibly large number of features.

Given a binary classification problem with l labeled examples {xi, yi}
l
i=1

where the input patterns xi ∈ R
d (e.g documents) and the labels yi ∈

{+1,−1}, l2-SVM-MFN provides an efficient primal solution to the following

SVM optimization problem:

w? = argmin
w∈Rd

1

2

l∑

i=1

l2(yiw
T xi) +

λ

2
‖w‖2 (1.1)

4 Newton Methods for Fast Solution of Semi-supervised Linear SVMs

where l2 is the l2-SVM loss given by l2(z) = max(0, 1−z)2, λ is a real-valued

regularization parameter2 and the final classifier is given by sign(w?T x).

This objective function differs from the standard SVM problem in some

respects. First, instead of using the hinge loss as the data fitting term, the

square of the hinge loss (or the so-called quadratic soft margin loss function)

is used. This makes the objective function continuously differentiable, allow-

ing easier applicability of gradient techniques. Secondly, the bias term (“b”)

is also regularized. In the problem formulation of Eqn. 1.1, it is implicitly

assumed that an additional component in the weight vector and a constant

feature in the example vectors have been added to indirectly incorporate

the bias. This formulation combines the simplicity of a least squares aspect

with algorithmic advantages associated with SVMs.

We consider a version of l2-SVM-MFN where a weighted quadratic soft

margin loss function is used.

min
w

f(w) =
1

2

∑

i∈(w)

cil2(yiw
T xi) +

λ

2
‖w‖2 (1.2)

Here we have rewritten Eqn. 1.1 in terms of the support vector set (w) = {i :

yi (wT xi) < 1}. Additionally, the loss associated with the ith example has a

cost ci. f(w) refers to the objective function being minimized, evaluated at

a candidate solution w. Note that if the index set (w) were independent of

w and ran over all data points, this would simply be the objective function

for weighted linear regularized least squares (RLS).

Following Keerthi and DeCoste (2005), we observe that f is a strictly

convex, piecewise quadratic, continuously differentiable function having a

unique minimizer. The gradient of f at w is given by:

∇ f(w) = λ w + XT
(w)C(w)

[
X(w)w − Y(w)

]

where X(w) is a matrix whose rows are the feature vectors of training points

corresponding to the index set (w), Y(w) is a column vector containing

labels for these points, and C(w) is a diagonal matrix that contains the

costs ci for these points along its diagonal.

l2-SVM-MFN is a primal algorithm that uses the Newton’s Method for

unconstrained minimization of a convex function. The classical Newton’s

method is based on a second order approximation of the objective function,

and involves updates of the following kind:

wk+1 = wk + δk nk (1.3)

2. λ = 1/C where C is the standard SVM parameter.

1.2 Modified Finite Newton Linear l2-SVM 5

where the step size δk ∈ R, and the Newton direction nk ∈ R
d is given by:

nk = −[∇2 f(wk)]−1∇ f(wk). Here, ∇ f(wk) is the gradient vector and

∇2 f(wk) is the Hessian matrix of f at wk. However, the Hessian does not

exist everywhere, since f is not twice differentiable at those weight vectors

w where wT xi = yi for some index i.3 Thus a generalized definition of the

Hessian matrix is used. The modified finite Newton procedure proceeds as

follows. The step w̄k = wk + nk in the Newton direction can be seen to

be given by solving the following linear system associated with a weighted

linear regularized least squares problem over the data subset defined by the

indices (wk):
[

λI + XT
(wk)C(wk)X(wk)

]

w̄k = XT
(wk)C(wk)Y(wk) (1.4)

where I is the identity matrix. Once w̄k is obtained, wk+1 is obtained from

Eqn. 1.3 by setting wk+1 = wk + δk(w̄k − wk) after performing an exact

line search for δk, i.e., by exactly solving a one-dimensional minimization

problem:

δk = argmin
δ≥0

φ(δ) = f
(

wk + δ(w̄k − wk)
)

(1.5)

The modified finite Newton procedure has the property of finite conver-

gence to the optimal solution. The key features that bring scalability and

numerical robustness to l2-SVM-MFN are: (a) Solving the regularized least

squares system of Eqn. 1.4 by a numerically well-behaved Conjugate Gra-

dient scheme referred to as CGLS (Frommer and Maass, 1999), which is

designed for large, sparse data matrices X. The benefit of the least squares

aspect of the loss function comes in here to provide access to a powerful

set of tools in numerical computation. (b) Due to the one-sided nature of

margin loss functions, these systems are required to be solved over only re-

stricted index sets (w) which can be much smaller than the whole dataset.

This also allows additional heuristics to be developed such as terminating

CGLS early when working with a crude starting guess like 0, and allowing

the following line search step to yield a point where the index set (w) is

small. Subsequent optimization steps then work on smaller subsets of the

data. Below, we briefly discuss the CGLS and Line search procedures. We

refer the reader to Keerthi and DeCoste (2005) for full details.

3. In the neighborhood of such a w, the index i leaves or enters (w). However, at w,
yiw

T xi = 1. So f is continuously differentiable inspite of these index jumps.

6 Newton Methods for Fast Solution of Semi-supervised Linear SVMs

1.2.1 CGLS

CGLS (Frommer and Maass, 1999) is a special conjugate-gradient solver that

is designed to solve, in a numerically robust way, large, sparse, weighted

regularized least squares problems such as the one in Eqn. 1.4. Starting

with a guess solution, several specialized conjugate-gradient iterations are

applied to get w̄k that solves Eqn. 1.4. The major expense in each iteration

consists of two operations of the form Xj(wk)p and XT
j(wk)q. If there are n0

non-zero elements in the data matrix, these involve O(n0) cost. It is worth

noting that, as a subroutine of l2-SVM-MFN, CGLS is typically called on

a small subset, Xj(wk) of the full data set. To compute the exact solution

of Eqn. 1.4, r iterations are needed, where r is the rank of Xj(wk). But,

in practice, such an exact solution is unnecessary. CGLS uses an effective

stopping criterion based on gradient norm for early termination (involving

a tolerance parameter ε). The total cost of CGLS is O(tcglsn0) where tcgls is

the number of iterations, which depends on ε and the condition number of

Xj(wk), and is typically found to be very small relative to the dimensions of

Xj(wk) (number of examples and features). Apart from the storage of Xj(wk),

the memory requirements of CGLS are also minimal: only five vectors need

to be maintained, including the outputs over the currently active set of data

points.

Finally, an important feature of CGLS is worth emphasizing. Suppose the

solution w of a regularized least squares problem is available, i.e the linear

system in Eqn. 1.4 has been solved using CGLS. If there is a need to solve

a perturbed linear system, it is greatly advantageous in many settings to

start the CG iterations for the new system with w as the initial guess. This

is called seeding. If the starting residual is small, CGLS can converge much

faster than with a guess of 0 vector. The utility of this feature depends

on the nature and degree of perturbation. In l2-SVM-MFN, the candidate

solution wk obtained after line search in iteration k is seeded for the CGLS

computation of w̄k. Also, in tuning λ over a range of values, it is valuable

to seed the solution for a particular λ onto the next value. For the semi-

supervised SVM implementations with l2-SVM-MFN, we will seed solutions

across linear systems with slightly perturbed label vectors, data matrices

and costs.

1.2.2 Line Search

Given the vectors wk,w̄k in some iteration of l2-SVM-MFN, the line search

step requires us to solve Eqn. 1.5. The one-dimensional function φ(δ) is the

restriction of the objective function f on the ray from wk onto w̄k. Hence,

1.2 Modified Finite Newton Linear l2-SVM 7

like f , φ(δ) is also a continuously differentiable, strictly convex, piecewise

quadratic function with a unique minimizer. φ′ is a continuous piecewise

linear function whose root, δk, can be easily found by sorting the break

points where its slope changes and then performing a sequential search on

that sorted list. The cost of this operation is negligible compared to the cost

of the CGLS iterations.

1.2.3 Complexity

l2-SVM-MFN alternates between calls to CGLS and line searches until the

support vector set (wk) stabilizes upto a tolerance parameter τ , i.e., if

∀i ∈ (wk), yiw̄
kT xi < 1 + τ and ∀i /∈ (wk), yiw̄

kT xi ≥ 1 − τ . Its

computational complexity is O(tmfnt̄cglsn0) where tmfn is the number of

outer iterations of CGLS calls and line search, and t̄cgls is the average number

of CGLS iterations. The number of CGLS iterations to reach a relative error

of ε can be bounded in terms of ε and the condition number of the left-hand-

side matrix in Eqn 1.4 (Bjork, 1996).

In practice, tmfn and t̄cgls depend on the data set and the tolerances

desired in the stopping criterion, but are typically very small. As an example

of typical behavior: on a Reuters (Lewis et al., 2004) text classification

problem (top level category CCAT versus rest) involving 804414 examples

and 47236 features, tmfn = 7 with a maximum of tcgls = 28 CGLS iterations;

on this dataset l2-SVM-MFN converges in about 100 seconds on an Intel

3GHz, 2GB RAM machine4. The practical scaling is linear in the number of

non-zero entries in the data matrix (Keerthi and DeCoste, 2005).

1.2.4 Other Loss functions

All the discussion in this paper can be applied to other loss functions such

as Huber’s Loss and rounded Hinge loss using the modifications outlined

in Keerthi and DeCoste (2005).

We also note a recently proposed linear time training algorithm for hinge

loss (Joachims, 2006). While detailed comparative studies are yet to be

conducted, preliminary experiments have shown that l2-SVM-MFN and the

methods of (Joachims, 2006) are competitive with each other (at their

default tolerance parameters).

We now assume that in addition to l labeled examples, we have u unlabeled

examples {x′
j}

u
j=1. Our goal is to extend l2-SVM-MFN to utilize unlabeled

data, typically when l � u.

4. For this experiment, λ is chosen as in (Joachims, 2006); ε, τ = 10−6.

8 Newton Methods for Fast Solution of Semi-supervised Linear SVMs

1.3 Fast Multi-switch Transductive SVMs

Transductive SVM appends an additional term in the SVM objective func-

tion whose role is to drive the classification hyperplane towards low data den-

sity regions. Variations of this idea have appeared in the literature (Joachims,

1998; Bennett and Demirez, 1998; Fung and Mangasarian, 2001). Since

(Joachims, 1998) describes what appears to be the most natural extension

of standard SVMs among these methods, and is popularly used in text clas-

sification applications, we will focus on developing its large scale implemen-

tation.

The following optimization problem is setup for standard TSVM5:

min
w,{y′

j}
u
j=1

λ

2
‖w‖2 +

1

2l

l∑

i=1

L(yi wT xi) +
λ′

2u

u∑

j=1

L(y′j wT x′
j)

subject to:
1

u

u∑

j=1

max[0, sign(wT x′
j)] = r

where for the loss function L(z), the hinge loss l1(z) = max(0, 1 − z) is

normally used. The labels on the unlabeled data, y′1 . . . y′u, are {+1,−1}-

valued variables in the optimization problem. In other words, TSVM seeks

a hyperplane w and a labeling of the unlabeled examples, so that the SVM

objective function is minimized, subject to the constraint that a fraction r

of the unlabeled data be classified positive. SVM margin maximization in

the presence of unlabeled examples can be interpreted as an implementation

of the cluster assumption. In the optimization problem above, λ′ is a user-

provided parameter that provides control over the influence of unlabeled

data. For example, if the data has distinct clusters with a large margin,

but the cluster assumption does not hold, then λ′ can be set to 0 and the

standard SVM is retrieved. If there is enough labeled data, λ, λ′ can be tuned

by cross-validation. An initial estimate of r can be made from the fraction

of labeled examples that belong to the positive class and subsequent fine

tuning can be done based on validation performance.

This optimization is implemented in (Joachims, 1998) by first using an

inductive SVM to label the unlabeled data and then iteratively switching

labels and retraining SVMs to improve the objective function. The TSVM

algorithm wraps around an SVM training procedure. The original (and

widely popular) implementation of TSVM uses the SVMlight software. There,

5. The bias term is typically excluded from the regularizer, but this factor is not expected
to make any significant difference.

1.3 Fast Multi-switch Transductive SVMs 9

the training of SVMs in the inner loops of TSVM uses dual decomposition

techniques. As shown by experiments in (Keerthi and DeCoste, 2005), in

sparse, linear settings one can obtain significant speed improvements with

l2-SVM-MFN over SVMlight. Thus, by implementing TSVM with l2-SVM-

MFN, we expect similar improvements for semi-supervised learning on large,

sparse datasets. The l2-SVM-MFN retraining steps in the inner loop of

TSVM are typically executed extremely fast by using seeding techniques.

Additionally, we also propose a version of TSVM where more than one pair

of labels may be switched in each iteration. These speed-enhancement details

are discussed in the following subsections.

1.3.1 Implementing TSVM Using l2-SVM-MFN

To develop the TSVM implementation with l2-SVM-MFN, we consider the

TSVM objective function but with the l2-SVM loss function, L = l2.

Figure 1.1: l2 loss function for TSVM

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

output

lo
ss

Note that this objective function above can also be equivalently written

in terms of the following loss over each unlabeled example x:

min[l2(w
T x), l2(−wT x)] = max[0, 1 − |wT x|]2

Here, we pick the value of the label variable y that minimizes the loss on

the unlabeled example x, and rewrite in terms of the absolute value of the

output of the classifier on x. This loss function is shown in Fig. 1.1. We note

in passing that, l1 and l2 loss terms over unlabeled examples are very similar

on the interval [−1, +1]. The non-convexity of this loss function implies that

the TSVM training procedure is susceptible to local optima issues. In the

next subsection, we will outline a deterministic annealing procedure that is

designed to deal with this problem.

10 Newton Methods for Fast Solution of Semi-supervised Linear SVMs

The TSVM algorithm with l2-SVM-MFN closely follows the presentation

in (Joachims, 1998). A classifier is obtained by first running l2-SVM-MFN

on just the labeled examples. Temporary labels are assigned to the unlabeled

data by thresholding the soft outputs of this classifier so that the fraction of

the total number of unlabeled examples that are temporarily labeled positive

equals the parameter r. Then starting from a small value of λ′, the unlabeled

data is gradually brought in by increasing λ′ by a certain factor in the outer

loop. This gradual increase of the influence of the unlabeled data is a way

to protect TSVM from being immediately trapped in a local minimum.

An inner loop identifies pairs of unlabeled examples with positive and

negative temporary labels such that switching these labels would decrease

the objective function. l2-SVM-MFN is then retrained with the switched

labels, starting the CGLS/line-search iterations with the current classifier.

1.3.2 Multiple Switching

The TSVM algorithm presented in Joachims (1998) involves switching a

single pair of labels at a time. We propose a variant where upto S pairs

are switched such that the objective function improves. Here, S is a user

controlled parameter. Setting S = 1 recovers the original TSVM algorithm,

whereas setting S = u/2 switches as many pairs as possible in the inner loop

of TSVM. The implementation is conveniently done as follows:

1. Identify unlabeled examples with active indices and currently positive

labels. Sort corresponding outputs in ascending order. Let the sorted list be

L+.

2. Identify unlabeled examples with active indices and currently negative

labels. Sort corresponding outputs in descending order. Let the sorted list

be L−.

3. Pick pairs of elements, one from each list, from the top of these lists

until either a pair is found such that the output from L+ is greater than the

output from L−, or if S pairs have been picked.

4. Switch the current labels of these pairs.

Using arguments similar to Theorem 2 in Joachims (1998) we can show

that Transductive l2-SVM-MFN with multiple-pair switching converges in a

finite number of steps (Sindhwani and Keerthi, 2005).

We are unaware of any prior work that suggests and evaluates this simple

multiple-pair switching heuristic. Our experimental results in section 1.5

establish that this heuristic is remarkably effective in speeding up TSVM

training while maintaining generalization performance.

1.4 Semi-supervised SVMs based on Deterministic Annealing 11

1.3.3 Seeding

The effectiveness of l2-SVM-MFN on large sparse datasets combined with

the efficiency gained from seeding w in the re-training steps (after switching

labels or after increasing λ′) make this algorithm quite attractive. For a fixed

λ′, the complexity of Transductive l2-TSVM-MFN is O(nswitchest̄mfnt̄cglsn0),

where nswitches is the number of label switches. Typically, nswitches is ex-

pected to strongly depend on the data set and also on the number of labeled

examples. Since it is difficult to apriori estimate the number of switches, this

is an issue that is best understood from empirical observations.

1.4 Semi-supervised SVMs based on Deterministic Annealing

The transductive SVM loss function over the unlabeled examples can be

seen from Fig. 1.1 to be non-convex. This makes the TSVM optimization

procedure susceptible to local minimum issues causing a loss in its perfor-

mance in many situations, e.g., as recorded by Chapelle and Zien (2005).

We now present a new algorithm based on Deterministic Annealing (DA)

that can potentially overcome this problem while also being computationally

very attractive for large scale applications.

Deterministic Annealing (Bilbro et al., 1989; Soderberg, 1989) is an estab-

lished tool for combinatorial optimization that approaches the problem from

information theoretic principles. The discrete variables in the optimization

problem are relaxed to continuous probability variables and a non-negative

temperature parameter T is used to track the global optimum.

We begin by re-writing the TSVM objective function as follows:

w? = argmin
w,{µj}u

j=1

λ

2
‖w‖2 +

1

2l

l∑

i=1

l2(w
T xi)

+
λ′

2u

u∑

j=1

(
µjl2(w

T x′
j) + (1 − µj)l2(−wT x′

j)
)

Here, we introduce binary valued variables µj = (1 + yj)/2. Let pj ∈ [0, 1]

denote the belief probability that the unlabeled example x′
j belongs to the

positive class. The Ising model 6 motivates the following objective function,

where we relax the binary variables µj to probability-like variables pj , and

6. A multiclass extension would use the Potts glass model. There, one would have to
append the entropy of the distribution over multiple classes to a multi-class objective
function.

12 Newton Methods for Fast Solution of Semi-supervised Linear SVMs

include entropy terms for the distributions defined by pj :

w?
T = argmin

w,{pj}u
j=1

λ

2
‖w‖2 +

1

2l

l∑

i=1

l2(yiw
T xi)

+
λ′

2u

u∑

j=1

(
pjl2(w

T x′
j) + (1 − pj)l2(−wT x′

j)
)

+
T

2u

u∑

j=1

[pj log pj + (1 − pj) log (1 − pj)] (1.6)

Here, the “temperature” T parameterizes a family of objective functions.

The objective function for a fixed T is minimized under the following class

balancing constraint:

1

u

u∑

j=1

pj = r (1.7)

where r is the fraction of the number of unlabeled examples belonging to

the positive class. As in TSVM, r is treated as a user-provided parameter.

It may also be estimated from the labeled examples.

The solution to the optimization problem above is tracked as the temper-

ature parameter T is lowered to 0.

We monitor the value of the objective function in the optimization path

and return the solution corresponding to the minimum value achieved.

To develop an intuition for the working on this method, we consider the

loss terms associated with an unlabeled example in Eqn 1.6 as a function

of the output of the classifier, after plugging in the optimal value of the

associated p variable. Figure 1.2 plots this effective loss for various values

of T . As the temperature is decreased, the loss function deforms from a

squared-loss shape where a global optimum is easier to achieve, to the TSVM

loss function in Fig. 1.1. The minimizer is slowly tracked as the temperature

is lowered towards zero. A recently proposed method (Chapelle et al., 2006)

uses a similar idea.

The optimization is done in stages, starting with high values of T and

then gradually decreasing T towards 0. For each T , the objective function

in Eqn 1.6 (subject to the constraint in Eqn 1.7) is optimized by alter-

nating the minimization over w and p = [p1 . . . pu] respectively. Fixing p,

the optimization over w is done by l2-SVM-MFN with seeding. Fixing w,

the optimization over p can also be done easily as described below. Both

these problems involve convex optimization and can be done exactly and

efficiently. We now provide some details.

1.4 Semi-supervised SVMs based on Deterministic Annealing 13

Figure 1.2: DA effective loss as a function (parameterized by T) of output
on an unlabeled example.

−3 −2 −1 0 1 2 3
−2

−1.5

−1

−0.5

0

0.5

1

output

lo
ss

Decreasing T

1.4.1 Optimizing w

We describe the steps to efficiently implement the l2-SVM-MFN loop for

optimizing w keeping p fixed. The call to l2-SVM-MFN is made on the data

X̂ =
[
XT X ′T X ′T

]T
whose first l rows are formed by the labeled examples,

and the next 2u rows are formed by the unlabeled examples appearing as

two repeated blocks. The associated label vector and cost matrix are given

by

Ŷ = [y1, y2...yl,

u
︷ ︸︸ ︷

1, 1, ...1,

u
︷ ︸︸ ︷

−1,−1... − 1]

C = diag

l
︷ ︸︸ ︷

1

l
...

1

l
,

u
︷ ︸︸ ︷

λ′ p1

u
...

λ′ pu

u

u
︷ ︸︸ ︷

λ′(1 − p1)

u
...

λ′(1 − pu)

u

(1.8)

Even though each unlabeled data contributes two terms to the objective

function, effectively only one term contributes to the complexity. This is

because matrix-vector products, which form the dominant expense in l2-

SVM-MFN, are performed only on unique rows of a matrix. The output

may be duplicated for duplicate rows. Infact, we can re-write the CGLS

calls in l2-SVM-MFN so that the unlabeled examples appear only once in

the data matrix.

14 Newton Methods for Fast Solution of Semi-supervised Linear SVMs

1.4.2 Optimizing p

For the latter problem of optimizing p for a fixed w, we construct the

Lagrangian:

L =
λ′

2u

u∑

j=1

(
pjl2(w

T x′
j) + (1 − pj)l2(−wT x′

j)
)

+

T

2u

u∑

j=1

(pj log pj + (1 − pj) log (1 − pj)) − ν

1

u

u∑

j=1

pj − r

Solving ∂L/∂pj = 0, we get:

pj =
1

1 + e
gj−2ν

T

(1.9)

where gj = λ′[l2(w
T x′

j) − l2(−wT x′
j)]. Substituting this expression in the

balance constraint in Eqn. 1.7, we get a one-dimensional non-linear equation

in 2ν:

1

u

u∑

j=1

1

1 + e
gi−2ν

T

= r

The root is computed by using a hybrid combination of Newton-Raphson

iterations and the bisection method together with a carefully set initial value.

1.4.3 Stopping Criteria

For a fixed T , the alternate minimization of w and p proceeds until some

stopping criterion is satisfied. A natural criterion is the mean Kullback-

Liebler divergence (relative entropy) KL(p, q) between current values of pi

and the values, say qi, at the end of last iteration. Thus the stopping criterion

for fixed T is:

KL(p, q) =
u∑

j=1

pj log
pj

qj
+ (1 − pj) log

1 − pj

1 − qj
< uε

A good value for ε is 10−6. As T approaches 0, the variables pj approach 0

or 1. The temperature may be decreased in the outer loop until the total

entropy falls below a threshold, which we take to be ε = 10−6 as above, i.e.,

H(p) = −
u∑

j=l

(pj log pj + (1 − pj) log (1 − pj)) < uε

1.5 Empirical Study 15

The TSVM objective function,

λ

2
‖w‖2 +

1

2l

l∑

i=1

l2(yi (wT xi) +
λ′

2u

u∑

j=1

max
[
0, 1 − |wT x′

j |
]2

is monitored as the optimization proceeds. The weight vector corresponding

to the minimum transductive cost in the optimization path is returned as

the solution.

1.5 Empirical Study

Semi-supervised learning experiments were conducted to test these algo-

rithms on four medium-scale datasets (aut-avn, real-sim, ccat and gcat) and

three large scale (full-ccat,full-gcat,kdd99) datasets. These are listed in Ta-

ble 1.1. All experiments were performed on Intel Xeon CPU 3GHz, 2GB

RAM machines.

Software

For software implementation used for benchmarking in this section, we point

the reader to the SVMlin package available at

http://www.cs.uchicago.edu/~vikass/svmlin.html

Datasets

The aut-avn and real-sim binary classification datasets come from a

collection of UseNet articles7 from four discussion groups, for simulated

auto racing, simulated aviation, real autos, and real aviation. The ccat and

gcat datasets pose the problem of separating corporate and government re-

lated articles respectively; these are the top-level categories in the RCV1

training data set (Lewis et al., 2004). full-ccat and full-gcat are the corre-

sponding datasets containing all the 804414 training and test documents

in the RCV1 corpus. These data sets create an interesting situation where

semi-supervised learning is required to learn different low density separa-

tors respecting different classification tasks in the same input space. The

kdd99 dataset is from the KDD 1999 competition task to build a network in-

trusion detector, a predictive model capable of distinguishing between “bad”

connections, called intrusions or attacks, and “good” normal connections.

7. Available at: http://www.cs.umass.edu/∼mccallum/data/sraa.tar.gz

16 Newton Methods for Fast Solution of Semi-supervised Linear SVMs

This is a relatively low-dimensional dataset containing about 5 million ex-

amples.

Table 1.1: Two-class datasets. d : data dimensionality, n̄0 : average sparsity,
l+u : number of labeled and unlabeled examples, t : number of test examples,
r : positive class ratio.

Dataset d n̄0 l + u t r

aut-avn 20707 51.32 35588 35587 0.65

real-sim 20958 51.32 36155 36154 0.31

ccat 47236 75.93 17332 5787 0.46

gcat 47236 75.93 17332 5787 0.30

full-ccat 47236 76.7 804414 - 0.47

full-gcat 47236 76.7 804414 - 0.30

kdd99 128 17.3 4898431 - 0.80

For the medium-scale datasets, the results below are averaged over 10

random stratified splits of training (labeled and unlabeled) and test sets.

The detailed performance of SVM, DA and TSVM (single and maximum

switching) is studied as a function of the amount of labeled data in the

training set. For the large scale datasets full-ccat, full-gcat and kdd99 we are

mainly interested in computation times; a transductive setting is used to

study performance in predicting the labels of unlabeled data on single splits.

On full-ccat and full-gcat , we train SVM, DA and TSVM with l = 100, 1000

labels; for kdd99 we experiment with l = 1000 labels.

Since the two classes are fairly well represented in these datasets, we report

error rates, but expect our conclusions to also hold for other performance

measures such as F-measure. We use a default values of λ = 0.001, and

λ′ = 1 for all datasets except8 for aut-avn and ccat where λ′ = 10. In the

outer loops of DA and TSVM, we reduced T and increased λ′ by a factor of

1.5 starting from T = 10 and λ′ = 10−5.

Minimization of Objective Function

We first examine the effectiveness of DA, TSVM with single switching

(S=1) and TSVM with maximum switching (S=u/2) in optimizing the

objective function. These three procedures are labeled DA,TSVM(S=1) and

TSVM(S=max) in Figure 1.3, where we report the minimum value of the

8. This produced better results for both TSVM and DA.

1.5 Empirical Study 17

objective function with respect to varying number of labels on aut-avn, real-

sim, ccat and gcat.

Figure 1.3: DA versus TSVM(S=1) versus TSVM(S=max): Minimum value
of objective function achieved.

45 89 178 356 712 1424
0.65

0.7

0.75
aut−avn

m
in

 o
bj

. v
al

ue

labels
46 91 181 362 724 1447

0.1

0.15

0.2

0.25

0.3
real−sim

m
in

 o
bj

. v
al

ue

labels

44 87 174 348 695 1389
0.4

0.5

0.6

0.7

0.8
ccat

m
in

 o
bj

. v
al

ue

labels
44 87 174 348 695 1389

0.1

0.15

0.2
gcat

m
in

 o
bj

. v
al

ue

labels

DA

TSVM(S=1)

TSVM(S=max)

The following observations can be made.

1. Strikingly, multiple switching leads to no loss of optimization as compared

to single switching. Indeed, the minimum objective value plots attained by

single and multiple switching are virtually indistinguishable in Figure 1.3.

2. As compared to TSVM(S=1 or S=max), DA performs significantly bet-

ter optimization on aut-avn and ccat; and slightly, but consistently bet-

ter optimization on real-sim and gcat. These observations continue to hold

for full-ccat and full-gcat as reported in Table 1.2 where we only performed

experiments with TSVM(S=max). Table 1.3 reports that DA gives a better

minimum on the kdd99 dataset too.

Generalization Performance

In Figure 1.4 we plot the mean error rate on the (unseen) test set with

respect to varying number of labels on aut-avn, real-sim, ccat and gcat. In

Figure 1.5, we superimpose these curves over the performance curves of

a standard SVM which ignores unlabeled data. Tables 1.4, 1.5 report the

corresponding results for full-ccat, full-gcat and kdd99.

The following observations can be made.

18 Newton Methods for Fast Solution of Semi-supervised Linear SVMs

Table 1.2: Comparison of minimum value of objective functions attained by
TSVM(S=max) and DA on full-ccat and full-gcat.

full-ccat full-gcat

l, u TSVM DA TSVM DA

100, 402107 0.1947 0.1940 0.1491 0.1491

100, 804314 0.1945 0.1940 0.1500 0.1499

1000, 402107 0.2590 0.2588 0.1902 0.1901

1000, 804314 0.2588 0.2586 0.1907 0.1906

Table 1.3: Comparison of minimum value of objective functions attained by
TSVM(S=max) and DA on kdd99

l, u TSVM DA

1000, 4897431 0.0066 0.0063

Table 1.4: TSVM(S=max) versus DA versus SVM: Error rates over unlabeled
examples in full-ccat and full-gcat.

full-ccat full-gcat

l, u TSVM DA SVM TSVM DA SVM

100, 402107 14.81 14.88 25.60 6.02 6.11 11.16

100, 804314 15.11 13.55 25.60 5.75 5.91 11.16

1000, 402107 11.45 11.52 12.31 5.67 5.74 7.18

1000, 804314 11.30 11.36 12.31 5.52 5.58 7.18

1. Comparing the performance of SVM against the semi-supervised algo-

rithms in Figure 1.5, the benefit of unlabeled data for boosting generaliza-

tion performance is evident on all datasets. This is true even for moderate

number of labels, though it is particularly striking towards the lower end.

On full-ccat and full-gcat too one can see significant gains with unlabeled

data. On kdd99, SVM performance with 1000 labels is already very good.

2. In Figure 1.4, we see that on aut-avn, DA outperforms TSVM signifi-

cantly. On real-sim, TSVM and DA perform very similar optimization of

the transduction objective function (Figure 1.3), but appear to return very

different solutions. The TSVM solution returns lower error rates as compared

to DA on this dataset. On ccat, DA performed a much better optimization

(Figure 1.3) but this does not translate into major error rate improvements.

DA and TSVM are very closely matched on gcat. From Table 1.4 we see

1.5 Empirical Study 19

Figure 1.4: Error rates on Test set: DA versus TSVM(S=1) versus TSVM(S=max)

45 89 178 356 712 1424
2

4

6

8
aut−avn

te
st

 e
rr

or
(%

)
labels

46 91 181 362 724 1447
5

10

15

20
real−sim

te
st

 e
rr

or
(%

)

labels

44 87 174 348 695 1389
0

10

20

30
ccat

te
st

 e
rr

or
(%

)

labels
44 87 174 348 695 1389
5

5.5

6

6.5
gcat

te
st

 e
rr

or
(%

)

labels

DA

TSVM(S=1)

TSVM(S=max)

Table 1.5: DA versus TSVM(S = max) versus SVM: Error rates over
unlabeled examples in kdd99.

l,u TSVM DA SVM

1000, 4897431 0.48 0.22 0.29

that TSVM and DA are competitive. On kdd99 (Table 1.5), DA gives the

best results.

3. On all datasets we found that maximum switching returned nearly iden-

tical performance as single switching. Since it saves significant computation

time, as we report in the following section, our study establishes multiple

switching (in particular, maximum switching) as a valuable heuristic for

training TSVMs.

4. These observations are also true for in-sample transductive performance

for the medium scale datasets (detailed results not shown). Both TSVM and

DA provide high quality extension to unseen test data.

Computational Timings

In Figure 1.6 and Tables 1.6, 1.7 we report the computation time for our

algorithms. The following observations can be made.

1. From Figure 1.6 we see that the single switch TSVM can be six to seven

20 Newton Methods for Fast Solution of Semi-supervised Linear SVMs

Figure 1.5: Benefit of Unlabeled data

45 89 178 356 712 1424
0

10

20

30

40
aut−avn

te
st

 e
rr

or
(%

)

labels
46 91 181 362 724 1447
0

10

20

30
real−sim

te
st

 e
rr

or
(%

)

labels

44 87 174 348 695 1389
0

10

20

30
ccat

te
st

 e
rr

or
(%

)

labels
44 87 174 348 695 1389
0

10

20

30
gcat

te
st

 e
rr

or
(%

)

labels

DA

TSVM(S=1)

TSVM(S=max)

SVM

Table 1.6: Computation times (mins) for TSVM(S=max) and DA on full-

ccat and full-gcat (804414 examples, 47236 features)

full-ccat full-gcat

l, u TSVM DA TSVM DA

100, 402107 140 120 53 72

100, 804314 223 207 96 127

1000, 402107 32 57 20 42

1000, 804314 70 100 38 78

times slower than the maximum switching variant, particularly when labels

are few. DA is significantly faster than single switch TSVM when labels are

relatively few, but slower than TSVM with maximum switching.

2. In Table 1.6, we see that doubling the amount of data roughly doubles

the training time, empirically confirming the linear time complexity of our

methods. The training time is also strongly dependent on the number of

labels. On kdd99 (Table 1.7), the maximum-switch TSVM took around 15

minutes to process the 5 million examples whereas DA took 2 hours and 20

minutes.

3. On medium scale datasets, we also compared against SVMlight which took

on the order of several hours to days to train TSVM. We expect the multi-

switch TSVM to also be highly effective when implemented in conjunction

with the methods of Joachims (2006).

1.5 Empirical Study 21

Figure 1.6: Computation time with respect to number of labels for DA and
Transductive l2-SVM-MFN with single and multiple switches.

45 89 178 356 712 1424
0

500

1000

1500
aut−avn

cp
u

tim
e

(s
ec

s)

labels
46 91 181 362 724 1447
0

500

1000

1500
real−sim

cp
u

tim
e

(s
ec

s)

labels

44 87 174 348 695 1389
0

500

1000

1500
ccat

cp
u

tim
e

(s
ec

s)

labels
44 87 174 348 695 1389
0

200

400

600
gcat

cp
u

tim
e

(s
ec

s)

labels

DA

TSVM(S=1)

TSVM(S=max)

Table 1.7: Computation time (mins) for TSVM(S=max) and DA on
kdd99 (4898431 examples, 127 features)

l, u TSVM DA

1000, 4897431 15 143

Importance of Annealing

To confirm the necessity of an annealing component (tracking the minimizer

while lowering T) in DA, we also compared it with an alternating w,p

optimization procedure where the temperature parameter is held fixed at

T = 0.1 and T = 0.001. This study showed that annealing is important; it

tends to provide higher quality solutions as compared to fixed temperature

optimization. It is important to note that the gradual increase of λ′ to the

user-set value in TSVM is also a mechanism to avoid local optima. The

non-convex part of the TSVM objective function is gradually increased

to a desired value. In this sense, λ′ simultaneously plays the role of an

annealing parameter and also as a tradeoff parameter to enforce the cluster

assumption. This dual role has the advantage that a suitable λ′ can be chosen

by monitoring performance on a validation set as the algorithm proceeds.

In DA, however, we directly apply a framework for global optimization,

and decouple annealing from the implementation of the cluster assumption.

As our experiments show, this can lead to significantly better solutions on

22 Newton Methods for Fast Solution of Semi-supervised Linear SVMs

many problems. On time-critical applications, one may tradeoff quality of

optimization against time, by varying the annealing rate.

1.6 Conclusion

In this paper we have proposed a family of primal SVM algorithms for large

scale semi-supervised learning based on the finite Newton technique. Our

methods significantly enhance the training speed of TSVM over existing

methods such as SVMlight and also include a new effective technique based

on deterministic annealing. The new TSVM method with multiple switching

is the fastest of all the algorithms considered, and also returns good gener-

alization performance. The DA method is relatively slower but sometimes

gives the best accuracy. These algorithms can be very valuable in applied

scenarios where sparse classification problems arise frequently, labeled data

is scarce and plenty of unlabeled data is easily available. Even in situations

where a good number of labeled examples are available, utilizing unlabeled

data to obtain a semi-supervised solution using these algorithms can be

worthwhile. For one thing, the semi-supervised solutions never lag behind

purely supervised solutions in terms of performance. The presence of a mix

of labeled and unlabeled data can provide added benefits such as reducing

performance variability and stabilizing the linear classifier weights. Our al-

gorithms can be extended to the non-linear setting (Sindhwani et al., 2006),

and may also be developed to handle clustering and one-class classification

problems. These are subjects for future work.

References

K. Bennett and A. Demirez. Semi-supervised support vector machines. In

Neural Information Processing Systems, 1998.

G. Bilbro, R. Mann, T.K. Miller, W.E. Snyder, and D.E. Van den. Opti-

mization by mean field annealing, 1989.

Ake Bjork. Numerical Methods for Least Squares Problems. SIAM, 1996.

O. Chapelle, M. Chi, and A. Zien. A continuation method for semi-

supervised svms. In International Conference on Machine Learning, 2006.

O. Chapelle and A. Zien. Semi-supervised classification by low density

separation. In Artificial Intelligence & Statistics, 2005.

R. Collobert, F. Sinz, J. Weston, and L. Bottou. Large scale transductive

svms. Journal of Machine Learning Research, 7:1687–1712, 2006.

1.6 Conclusion 23

A. Frommer and P. Maass. Fast cg-based methods for tikhonov-phillips

regularization. SIAM Journal on Scientific Computing, 20:1831–1850,

1999.

G. Fung and O. Mangasarian. Semi-supervised support vector machines

for unlabeled data classification. Optimization Methods and Software, 15:

29–44, 2001.

T. Joachims. Transductive inference for text classification using support

vector machines. In International Conference on Machine Learning, 1998.

T. Joachims. Training linear svms in linear time. In KDD, 2006.

S. S. Keerthi and D. DeCoste. A modified finite newton method for fast

solution of large scale linear svms. Journal of Machine Learning Research,

6:341–361, 2005.

D. Lewis, Y. Yang, T. Rose, and F. Li. Rcv1: A new benchmark collection

for text categorization research. Journal of Machine Learning Research,

5:361–397, 2004.

V. Sindhwani and S. S. Keerthi. Large scale semi-supervised linear svms.

Technical report, 2005.

V. Sindhwani, S.S. Keerthi, and O. Chapelle. Deterministic annealing for

semi-supervised kernel machines. In International Conference on Machine

Learning, 2006.

C. Peterson & B. Soderberg. A new method for mapping optimization

problems onto neural networks. International Journal of Neural Systems,

1:3–22, 1989.

V. Vapnik. Statistical Learning Theory. John Wiley and Sons, 1998.

