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Abstract

We consider the problem of model selection in unsupervised statistical learn-
ing techniques based on low-rank matrix approximations. While k-fold cross-
validation (CV) has become the standard method of choice for model selection in
supervised learning techniques, its adaptation to unsupervised matrix approxima-
tion settings has not received sufficient attention in the literature. In this paper, we
emphasize the natural link between cross-validating matrix approximations and
the task of matrix completion from partially observed entries. In particular, we
focus on Non-negative Matrix Factorizations and propose scalable adaptations of
Weighted NMF algorithms to efficiently implement cross-validation procedures
for different choices of holdout patterns and sizes. Empirical observations on text
modeling problems involving large, sparse document-term matrices suggest that
these procedures enable easier and more accurate selection of rank (i.e., number
of “topics” in text) than other alternatives for implementing CV.

1 Introduction
Let V be a large, sparse matrix of size m× n representing a collection of m high-dimensional data
points in Rn. The assumption that V is low-rank implies that most data points can be compactly
and accurately represented as linear combinations of a small set of k basis vectors H ∈ Rk×n, with
coefficients W ∈ Rm×k providing a lower-dimensional encoding. When V is non-negative, it is
appealing to enforce H and W to be non-negative as this lends a “parts-based” interpretability to
the representation i.e., each of the non-negative data points may be seen as an additive, sparse com-
position of k “parts”. Such Non-negative Matrix Factorizations (NMF) [5]), V ≈ WH , find wide
applicability in a variety of problems [2]. In particular, when the approximation error is measured in
terms of Generalized KL-divergence (I-divergence), NMF becomes identical to probabilistic Latent
Semantic Analysis (pLSI), a classic algorithm for modeling topics in text. NMF can also be reg-
ularized with different types of matrix norms, including l1 for promoting sparsity. Similarly, with
the squared frobenius approximation error, NMF is akin to Latent Semantic Analysis (LSI) except
for additionally enforcing non-negativity constraints (which turns it into an NP-hard optimization
problem). In this paper, we are concerned with the problem of model selection in NMFs and more
specifically, how to choose the correct number of topics when building NMF models of text, us-
ing forms of cross-validation. In standard supervised learning, K-fold cross-validation refers to the
common procedure where the data is partitioned into K chunks, each taking turns to serve as the
heldout test set for a model trained on the rest. In the end, the error is averaged acrossK runs and the
model with the smallest K-fold error is selected. When thinking of how to extend CV ideas to ma-
trix approximation, several natural questions arise: How should a matrix be partitioned to define CV
folds? How many folds should one use? Should rows be held out, or columns, or both? Should the
held-out pattern be somehow aligned with the data sparsity to avoiding holding out too many zero
cells? How should the model be trained in the presence of held out cells? The last question immedi-
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Figure 1: (i),(ii) illustrate 3 × 3 Gabriel holdouts. (iii) Owen and Perry’s reconstruction algorithm.
(iv) Row-holdouts for CV in NMF causes overfitting (monotonic decrease in reconstruction error)

ately establishes a link to matrix completion, a subject of significant interest both in the practice of
recommender systems [4] as well as in the theory of nuclear norm minimization [1]. Held-out cells
may be seen as missing values that need to be estimated. In this work, we propose a non-negative
matrix completion based approach to implementing CV as an alternative to previously considered
procedures. For scalability, we adapt weighted NMF algorithms for this purpose, where zero-valued
weights allow cells to be held out. We empirically explore the distinction between Gabriel [3] and
Wold [11] holdouts that correspond to holding out random cells or submatrices respectively, and
study the sensitivity of rank-selection to holdout sizes.

2 Cross-Validation in Matrix Approximations
For simplicity in exposition, we work with the Frobenius distance, ‖V −WH‖2fro, as a measure of
matrix approximation error in the rest of the paper. The most common CV procedure is based on
holding out rows of the matrix, as in the supervised learning case. However, models like LSI, pLSI
and NMF are transductive and do not inherently allow out of sample extension, and hence a “fold-
in” procedure is employed. Let Vtrain be the held-in and Vtest be the heldout rows. An NMF is first
learnt on the training set (Wtrain, Htrain) = argminW,H≥0 ‖Vtrain−WH‖2fro. The held out error,
estimated as minW≥0 ‖Vtest −WHtrain‖2 where Htrain is held fixed, may be seen as a measure
of how well topics learnt on training rows “explain” the unseen held-out data. However, row-holds
have been criticized in the literature [10] and may lead to overfitting since model parameters W are
re-estimated on Vtest and in this sense the heldout data is not completely unseen (also observed in
our analysis, Figure 1(iv)).

In a recent paper, Owen and Perry [7] revisit cross-validation in the context of SVD and NMF. They
use the term Bi-Cross-Validation (BiCV) to refer to more general two-dimensional holdout patterns.
In particular, they work with Gabriel holdout patterns [3] where the rows of the matrix are divided
into h groups and the columns are divided into l groups. The number of folds is hl; in each fold a
given row and column group identifies the heldout submatrix while the remaining cells are available
for training. An illustration of 3x3-fold cross-validation is shown in Figure 1(i,ii). During each

round of BiCV, the matrix may be viewed as being composed of 4 submatrices, V =

(
A B
C D

)
where A is the held out block, and the training blocks B,C,D are used to reconstruct A ≈ Â

resulting in the heldout error estimate ‖A − Â‖2fro. BiCV for SVD and NMF calls for different
reconstruction procedures. For SVD, it may be understood in terms of multivariate regression of
target variables C in terms of input variables D, followed by prediction of A in terms of B. Thus, a
least squares problem is solved, β̂ = ‖C−Dβ‖2fro, which provides the estimate Â = Bβ = BD†C

where D† is the pseudo-inverse of D. In this procedure, D† may be exactly estimated from SVD
of D. Thus, the BiCV procedure for SVD reduces to SVD of a training submatrix followed by
reconstruction of the heldout submatrix. Owen and Perry remark that this avoids the use of missing-
value methods to estimate heldout cells, for which only locally optimal solutions can be found. This
is also the reason Gabriel holdouts may be preferred over Wold [11] holdouts where random cells
(instead of submatrices) are held out and need to be estimated by missing value imputation. Owen
and Perry’s NMF BiCV procedure is described in Figure 1(iii). It is reasoned as follows. Instead
of taking the SVD of D, an NMF D ≈ WDHD is constructed. Then, Â = B(WDHD)†C =

(BH†D)(W †DC) =WAHA where WA = BH†D = argminW ‖B−WHD‖2fro and HA =W †DC =

argminH ‖C −WDH‖2fro. However, this reasoning produces WA and HA that may have negative
entries and therefore Owen and Perry replace their least squares estimates with non-negative least
squares (steps 2 and 3 in Figure 1(iii)).
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Rather than adapting SVD BiCV formulations to NMF in this manner, we propose the direct use
of non-negative matrix completion (imputation) methods. Unlike BiCV in SVD where Owen and
Perry’s procedure avoids potentially suboptimal imputation methods, the NMF case is different since
the factorization problem itself is non-convex. Hence, we revisit imputation for both Gabriel and
Wold holdouts in the NMF context. We begin by describing weighted NMFs that can be adapted for
BiCV. We then show how efficient BiCV can be performed by using low-rank weight matrices. An
empirical study is then reported on high dimensional text modeling problems. For related work on
NMF model selection, see [8, 7] and references therein.

3 Cross-validation Using Weighted NMF
Weighted NMFs minimize the following objective function, argminW≥0,H≥0 ‖S � (V −WH)‖2,
where X is an m × n data matrix, S is an m × n matrix of “weights” and W,H are m × k and
k × n matrices where k � m,n. � is the Hadamard product. The weights S allow domain-
specific emphasis in reconstructing certain matrix entries in preference to others. For example, in
face recognition applications [9], more emphasis may be needed in central image pixels with higher
likelihood of not being in the background. It has been shown [6, 9] that the following modifications
to Lee and Seung multiplicative update rules [5] lead to minimization of the above function. (

√
S is

the element-wise square root, not the matrix square root):

W =W � (
√
S � V )HT(√

S � (WH)
)
HT

H = H � WT (
√
S � V )

WT (
√
S � (WH))

(1)

In the context of cross-validation, weighted NMFs may be used by setting S to be binary, i.e.,
Sij = 1 for held-in entries and 0 for held-out entries. Also note that in this case

√
S = S. We

now develop techniques for efficiently evaluating Equation (1). Since held-in is typically a larger set
than held out, we will work with C = 1− S to allow for more efficient sparse matrix computations.
S � V zeros out the held-out entries from V and can be efficiently computed using V − C � V .
Computing S� (WH) efficiently is non-trivial since it might seem that we first need to multiply W
and H resulting a large dense matrix WH . In the unweighted case, WT (WH) = (WTW )H and
so we can avoid computing the dense matrix WH . However, this does not work for the weighted
case. First, if C is highly sparse, we can compute

WT ((1− C)� (WH)) = (WTW )H −WT (C � (WH))

where (C � (WH)) can be efficiently computed by evaluating WH only where C is sparse. How-
ever, this trick also does not work when C is large and dense such as in a 2× 2 Gabriel holdout.

We now show that by setting C to be a low-rank binary matrix we can cover Gabriel holdouts in
addition to a large class of Wold holdouts. First, we observe a simple relationship involving element-
wise products with low-rank matrices. Let C =

∑q
i=1 uiv

T
i be a rank-q matrix where ui ∈ <m and

vi ∈ <n. Then we observe,

WT (C � (WH)) =

q∑
i=1

WT (Dui
(WH)Dvi

) =

q∑
i=1

(WTDui
W )(HDvi)

Here, Du is the diagonal matrix with diagonal elements given by u, i.e., Du(i, i) = u(i). Gabriel
style block holdouts can be trivially covered by noting that C = uvT where u(i) = 1 if row i is in
the heldout block, 0 otherwise and v(i) = 1 if column i is in the heldout block, 0 otherwise. In other
words, Gabriel holdouts are a special case when q = 1. Taking q > 1, more general heldout patterns
can be designed by appropriately choosing (ui, vi) i.e. holdout patterns consisting of multiple blocks
can also be expressed.

4 Experimental Evaluation
In this section, we describe results of our preliminary experimental evaluation. To implement Wold
hold outs, we split the matrix into 16 blocks (after shuffling rows and columns). We randomly select
four blocks (one in each row. i.e., q = 4 in Section 3) to holdout and the remaining submatrices are
held in. Since Weighted NMF is highly sensitive to the initial values of the W and H matrices [6],
we execute it multiple times and take the mean of the reconstruction error. We work with one
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Figure 2: Results: Parts (a,b,c,d) illustrate benefits of WNMF over OP. Parts (e,f,g,h) indicate per-
formance of different Gabriel holdouts and (i,j,k,l) compare Wold and Gabriel holdouts.

synthetic and three real world text datasets. In the synthetic dataset, we construct a 100 × 100 V
matrix with rank 10, i.e., it has exactly 10 topics. We use three real world document collections with
“human labeled” topics: BBC (size 2235× 9635 with 20 topics), Reuters (size 7285× 18221 with
10 topics), and TDT2 (size 9394× 6545 with 30 topics). We will evaluate model selection in terms
of recovering the estimated number of topics in the datasets.

OP vs WNMF - for Gabriel holdouts Here, we compare the technique of Owen and Perry (OP)
and our WNMF-based approach for predicting the number of topics. For both techniques, we pick
the same 2 × 2 Gabriel holdout. We compute the cross-validation errors for different values of
K for both OP and the WNMF approach; and plot them in Figure 2(a,b,c,d) for the four different
datasets. As shown in the figures, for small values of K, both WNMF and OP provide almost
similar reconstruction errors, however after a certain model complexity, the reconstruction error
in WNMF increases dramatically. Hence, the WNMF-based technique provides a distinct point
at which we can read off the model parameters; unlike OP, for which the cross-validation error
decreases monotonically with increasing model complexity. For each of the datasets, we find that
the minima of WNMF’s reconstruction errors occurs close to the user predicted values.

Study of WNMF for different Gabriel holdouts In this experiment, we plot the cross-validation
error as a function of the number of topics, for Gabriel holdouts of different sizes - 2 × 2, 3 × 3
and 4× 4. The results are shown in Figure 2(e,f,g,h) for the different datasets. The errors for 4× 4
holdouts is smaller than 3×3 holdouts, which in turn is smaller than 2×2 since the error is computed
over a smaller set of matrix entries. As we move from 2 × 2 holdouts to 4 × 4 holdouts, the value
of K at which minima is achieved progressively shifts to the right. This behavior is expected since,
we are using more training data to predict a smaller heldout set – increasing model complexity can
lead to a smaller reconstruction error. A similar observation was also found in Owen and Perry [7].
Also, the error curves get progressively smoother. Since we are using a larger training set, we obtain
lower variance in the reconstruction error.

Gabriel vs Wold In this experiment, we check if the capability to handle more general holdouts pro-
vides a more robust procedure for model selection. We compare the cross-validation errors obtained
using 2×2 Gabriel holdouts and Wold holdouts (4 iterations) for different values for K. Our results
are shown in Figure 2(i,j,k,l). As shown in the Figure, the reconstruction errors for Wold holdouts
are quite similar to that of Gabriel holdouts. However, the error curves are not only smoother for
Wold holdouts than Gabriel holdouts, but also allow for more distinctive model selection.
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