
Large Sale Semi-supervised Linear SVMsV. Sindhwani� and S.S. Keerthi yMarh 29, 2006AbstratLarge sale learning is often realisti only in a semi-supervised set-ting where a small set of labeled examples is available together witha large olletion of unlabeled data. In many Information retrievaland data mining appliations, linear methods are strongly preferredbeause of their ease of implementation, interpretability and empiri-al performane. In this work, we present a family of semi-supervisedlinear support vetor lassi�ers that are designed to handle partially-labeled sparse datasets with possibly very large number of examplesand features. At their ore, our algorithms employ modi�ed �niteNewton tehniques reently developed in [15℄. Our ontributions inthis paper are as follows: (a) We provide an implementation of Lin-ear Transdutive SVM (TSVM) that is signi�antly more eÆient andsalable than urrently used dual tehniques, for linear lassi�ationproblems involving large, sparse datasets. (b) We propose a variantof TSVM that involves multiple swithing of labels. Experimental re-sults show that this variant provides an order of magnitude furtherimprovement in training eÆieny. () We present a new algorithmfor semi-supervised learning based on a mean �eld annealing (MFA)approah. This algorithm alleviates the problem of loal minimum inthe TSVM optimization proedure while being omputationally attra-tive. We ondut an empirial study on several doument lassi�ationtasks that on�rms the value of these approahes in providing salabletools for semi-supervised learning in large sale settings. Finally, wealso note various extensions and appliations of our methods.
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1 IntrodutionConsider the following situation: In a single web-rawl, searh engines likeYahoo! and Google index billions of webpages. Only a very small fration ofthese web-pages an possibly be hand-labeled by human editorial teams andassembled into topi diretories. The remaining web-pages form a massiveolletion of unlabeled douments. Eah doument is a sparse olletion ofwords and hyperlinks, highly strutured by grammatial onstraints, in avery high dimensional linguisti spae. It is lear that the development ofomputational tools to organize large amounts of high-dimensional data withvery little human supervision is entral to the goal of e�etive informationmanagement in many appliations.Despite its natural and pervasive need, solutions to the problem of uti-lizing unlabeled data with labeled examples have only reently emerged inmahine learning literature. Whereas the abundane of unlabeled data isfrequently aknowledged as a motivation in most papers, the true potentialof semi-supervised learning in large sale settings is yet to be systematiallyexplored. This appears to be partly due to the lak of salable tools to han-dle large volumes of data, and partly due to the ommon researh pratieof demonstrating semi-supervised learning on small datasets with extremelyfew labels.Our motivation for this work is two-fold: (a) We seek to develop las-si�ation algorithms for appliations involving large, possibly very high-dimensional but sparse, partially labeled datasets. Being the rule ratherthan the exeption, suh datasets arise routinely in numerous appliationse.g in doument lassi�ation, bioinformatis and sienti� omputing. (b)We seek to employ these tehniques for studying semi-supervised learning inrealisti large sale settings. With these tools, one an investigate how thegeometri struture of data in a high dimensional input spae interats withthe distribution of labels and the hypothesis spae for learning on real-worldproblems.In this paper, we propose extensions of linear Support Vetor Mahine(SVM) for semi-supervised lassi�ation. Linear tehniques are often themethod of hoie in many appliations due to their simpliity and inter-pretability. When data appears in a rih high-dimensional representation,linear funtions often provide a suÆiently omplex hypothesis spae forlearning high-quality lassi�ers. This has been established e.g for doumentlassi�ation with Linear SVMs in numerous studies (see e.g [5℄).Our methods are based on transdutive extensions of SVM �rst pro-posed in [19℄ and implemented with di�erent variations in [10, 1, 9, 6℄. Thekey idea is to bias the lassi�ation hyperplane to pass through a low datadensity region keeping points in eah data luster on the same side of thehyperplane while respeting labels. This algorithm uses an extended SVMobjetive funtion with a non-onvex loss term over the unlabeled examples2



to implement the luster assumption in semi-supervised learning1. This ideais of historial importane as one of the �rst onrete proposals for learn-ing from unlabeled data; its popular implementation in [10℄ is onsideredstate-of-the-art in text ategorization, even in the fae of inreasing reentompetition.We highlight the ontributions of this paper.1. We outline an implementation for a variant of Transdutive SVM [10℄designed for linear semi-supervised lassi�ation on large, sparse datasets.As ompared to urrently used dual tehniques (e.g in the SVM-Lightimplementation of TSVM), our method exploits data sparsity and lin-earity of the problem to provide superior salability. Additionally, wepropose a multiple swithing heuristi that further improves TSVMtraining by an order of magnitude. These speed enhanements turnTSVM into a feasible tool for large sale appliations.2. We propose a new algorithm for semi-supervised SVMs utilizing well-established information theoreti ideas for global optimization usingmean �eld methods. This algorithm generates a family of objetivefuntions whose non-onvexity is ontrolled by an annealing parame-ter. The global minimizer is traked with respet to this parameter.This approah alleviates the problem of loal minima in the TSVMoptimization proedure whih results in signi�antly better solutionson many problems, while also being omputationally attrative.3. We ondut an experimental study on many doument lassi�ationtasks with several thousands of examples and features. This studylearly shows the utility of our tools for large sale problems.The modi�ed �nite Newton algorithm (abbreviated L2-SVM-MFN) ofKeerthi and Deoste [15℄ for fast training of linear SVMs is a key subroutinefor our algorithms.This paper is arranged as follows. In setion 2 we desribe a slightlymodi�ed version of L2-SVM-MFN algorithm to suit the desription of thesemi-supervised methods (TSVM and MFA) in setion 3. Experimentalresults are presented in setion 4. In setion 5, we disuss some extensionsand appliations of our methods.2 Modi�ed Finite Newton Linear L2-SVMThe modi�ed �nite Newton L2-SVM method [15℄ (L2-SVM-MFN) is a re-ently developed training algorithm for Linear SVMs that is ideally suited1The assumption that points in a luster should have similar labels. The role of unla-beled data is to identify lusters and high density regions in the input spae.3



to sparse datasets with large number of examples and possibly large num-ber of features. In a typial appliation like doument lassi�ation, manytraining douments are olleted and proessed into a format that is on-venient for mathematial manipulations. For example, eah doument maybe represented as a olletion of d features assoiated with a voabulary ofd words. Theses feature may simply indiate the presene or absene of aword (binary features), or measure the frequeny of a word suitably nor-malized by its importane (TFIDF features) (see e.g [18℄ for more detailsand other representations). Even though the voabulary might be large,only a very small number of words appear in any doument relative to thevoabulary size. Thus, eah doument is sparsely represented as a bag ofwords. A label is then manually assigned to eah doument identifying apartiular ategory to whih it belongs (e.g \ommerial" or not). The taskof a lassi�ation algorithm (e.g SVM) is produe a lassi�er that an reli-ably identify the ategory of new douments based on information extratedfrom training douments .Given a binary lassi�ation problem with l labeled examples fxi; yigli=1where the input patterns xi 2 Rd (e.g a doument) and the labels yi 2f+1;�1g, L2-SVM-MFN provides an eÆient primal solution to the follow-ing SVM optimization problem:w? = argminw2Rd 12 lXi=1 max �0; 1� yi (wTxi)�2 + �2 kwk2 (1)Here, � is a real-valued regularization parameter and sign(w?Tx) is the �nallassi�er.This objetive funtion di�ers from the standard SVM problem in somerespets. First, instead of using the hinge loss as the data �tting term, thesquare of the hinge loss (or the so-alled quadrati soft margin loss funtion)is used. This makes the objetive funtion ontinuously di�erentiable, allow-ing easier appliability of gradient tehniques. Seondly, the bias term (\b")is also regularized. In the problem formulation of Eqn. 1, it is impliitly as-sumed that an additional omponent in the weight vetor and a onstantfeature in the example vetors have been added to indiretly inorporate thebias. This formulation ombines the simpliity of a least squares aspet withalgorithmi advantages assoiated with SVMs. We also note that all the dis-ussion in this paper an be applied to other loss funtions suh as Huber'sLoss and rounded Hinge loss using the modi�ations outlined in [15℄.We will onsider a version of L2-SVM-MFN where a weighted quadratisoft margin loss funtion is used.w? = argminw2Rd f(w) = argminw2Rd 12 Xi2|(w) i d2i (w) + �2 kwk2 (2)4



Here we exatly rewrite Eqn. 1 in terms of a partial summation of di(w) =wTxi�yi over an index set |(w) = fi : yi (wTxi) < 1g. Additionally, the lossassoiated with the ith example has a ost i. f(w) refers to the objetivefuntion being minimized, evaluated at a andidate solution w. Note that ifthe index set |(w) were independent of w and ran over all data points, thiswould simply be the objetive funtion for weighted linear regularized leastsquares (RLS).Following [15℄, we observe that f is a stritly onvex, pieewise quadrati,ontinuously di�erentiable funtion having a unique minimizer. The gradi-ent of f at w is given by:r f(w) = � w + Xi2|(w) i di(w) xi = � w +XT|(w)C|(w) �X|(w)w � Y|(w)�where X|(w) is a matrix whose rows are the feature vetors of training pointsorresponding to the index set |(w), Y|(w) is a olumn vetor ontaininglabels for these points, and C|(w) is a diagonal matrix that ontains theosts i for these points along its diagonal.L2-SVM-MFN is a primal algorithm that uses the Newton's Method forunonstrained minimization of a onvex funtion. The lassial Newton'smethod is based on a seond order approximation of the objetive funtion,and involves updates of the following kind:w(k+1) = w(k) + Æ(k) n(k) (3)where the step size Æk 2 R, and the Newton diretion nk 2 Rd is given by:n(k) = � hr2 f �w(k)�i�1r f �w(k)�Here, r f �w(k)� is the gradient vetor andr2 f �w(k)� is the Hessian matrixof f at w(k). However, the Hessian does not exist everywhere, sine f is nottwie di�erentiable at those weight vetors w where wTxi = yi for someindex i.2 For this reason, a �nite Newton method designed by Mangasarian[12℄ works around this issue through a generalized de�nition of the Hessianmatrix. On the other hand, the modi�ed �nite Newton proedure [15℄proeeds as follows. The step �w(k) = w(k)+n(k) in the Newton diretion anbe seen to be given by solving the following linear system assoiated witha weighted linear regularized least squares problem over the data subsetde�ned by the indies |(w(k)):h�I +XT|(w(k))C|(w(k))X|(w(k))i �w(k) = XT|(w(k))C|(w(k))Y|(w(k)) (4)2In the neighborhood of suh a w, the index i leaves or enters |(w). However, atw; di(w) = 0. So f is ontinuously di�erentiable inspite of these index jumps.5



where I is the identity matrix. One �w(k) is obtained, w(k+1) is obtained fromEqn. 3 by setting w(k+1) = w(k) + Æk( �w(k) �w(k)) after performing an exatline searh for Æk, i.e by exatly solving a one-dimensional minimizationproblem: Æ(k) = argminÆ�0 f �w(k) + Æ( �w(k) �w(k))�The modi�ed �nite Newton proedure has the property of �nite onver-gene to the optimal solution. The key features that bring salability andnumerial robustness to L2-SVM-MFN are: (a) Solving the regularized leastsquares system of Eqn. 4 by a numerially well-behaved Conjugate Gradientsheme [8℄ referred to as CGLS, whih is designed for large, sparse data ma-tries X. The bene�t of the least squares aspet of the loss funtion omesin here to provide aess to a powerful set of tools in numerial omputation.(b) Due to the one-sided nature of margin loss funtions, these systems arerequired to be solved over only restrited index sets |(w) whih an be muhsmaller than the whole dataset. This also allows additional heuristis tobe developed suh as terminating CGLS early when working with a rudestarting guess like 0, and allowing the following line searh step to yield apoint where the index set |(w) is small. Subsequent optimization steps thenwork on smaller subsets of the data3.We now outline the details of the CGLS and Line searh proedures.2.1 CGLSThe CGLS proedure solves large, sparse, weighted regularized least squaresproblems of the following form:��I +XTCX� � = XTCY (5)The key omputational issue here is to avoid the onstrution of the largeand dense matrix XTCX, and work only with the sparse matrix X and thediagonal ost matrix (stored as a vetor) C.Starting with a guess solution, �0, Conjugate Gradient performs itera-tions of the form: �(j+1) = �(j) + (j)p(j)where p(j) is a searh diretion and (j) 2 R gives the step in that diretion.The residual vetor (the di�erene vetor between LHS and RHS of Eqn. 5for a andidate �, whih is also the gradient of the assoiated quadrati formevaluated at �) is therefore updated as:r(j+1) = XTCY � ��I +XTCX� �(j+1) = XT z(j+1) � ��(j+1)3An implementation would also inlude heuristis 1 and 2, and some exeption handlingsteps as desribed in [15℄. 6



Here, we introdue the following intermediate vetors:z(j+1) = C �Y �X�(j+1)� = C �Y � hX�(j) + (j)Xp(j)i�= z(j) � (j)Cq(j)where q(j) = Xp(j)The optimal step-size (j) is given by:(j) = kr(j)k2p(j)T (I +XTCX)p(j) = kr(j)k2�kp(j)k2 + q(j)TCq(j)Finally, the searh diretions are updated as:p(j+1) = r(j+1) + !(j)p(j) where !(j) = kr(j+1)k2kr(j)k2It an be shown that these updates impliitly and inrementally onstruta onjugate basis4 p0; p1 : : : of Rd on the y; eah andidate solution �j isoptimal in the subspae de�ned by the urrent basis elements, onvergingto the desired solution in no more (and typially muh fewer) than d steps.The CGLS iterations are terminated when the norm of the gradientr(j+1) beomes small enough relative to the norm of the iterate z(j+1) or ifthe number of iterations exeed a ertain maximum allowable number.The CGLS iterations are listed in Table 2. The data matrix X is onlyinvolved in the omputations through matrix vetor multipliation for om-puting the iterates q(j) and r(j). This forms the dominant expense in eahiteration (the produt with C simply sales eah element of a vetor). Ifthere are n0 non-zero elements in the data matrix, this has O(n0) ost. Asa subroutine of L2-SVM-MFN, CGLS is typially alled on a small subsetof the full data set. The total ost of CGLS is O(tglsn0) where tgls isthe number of iterations, whih depends on the pratial rank of X and istypially found to be very small relative to the dimensions of X (number ofexamples and features). The memory requirements are also minimal: only�ve vetors need to be maintained, inluding the outputs over the urrentlyative set of data points. For more details on Conjugate gradient, see [2℄.Finally, an important feature of CGLS is worth emphasizing. Supposethe solution � of a regularizer least squares problem is available, i.e thelinear system in Eqn. 5 has been solved using CGLS. If there is a need tosolve a perturbed linear system, it is greatly advantageous in many settingsto start the CG iterations for the new system with � as the initial guess.This is often alled seeding. If the starting residual is small, CGLS anonverge muh faster than with a guess of 0 vetor. The utility of this feature4A basis with mutually orthogonal elements in the sense vT ˆ�I +XTCX˜u = 0 forany pair of elements u; v. 7



depends on the nature and degree of perturbation. In L2-SVM-MFN, theandidate solution w(k) obtained after line searh in iteration k is seeded forthe CGLS omputation of �wk. Also, in tuning � over a range of values, itis omputationally valuable to seed the solution for a partiular � onto thenext value. For the semi-supervised SVM implementations with L2-SVM-MFN, we will seed solutions aross linear systems with slightly perturbedlabel vetors, data matries and osts.2.2 Line SearhGiven the vetors w; �w in some iteration of L2-SVM-MFN, the line searhstep requires us to solve:Æ? = argminÆ�0 �(Æ) = f (wÆ)where wÆ = w + Æ( �w �w).The one-dimensional funtion �(Æ) is the restrition of the objetive fun-tion f on the ray from w onto �w. Hene, like f , �(Æ) is also a ontinuouslydi�erentiable, stritly onvex, pieewise quadrati funtion with a uniqueminimizer Æ? given by �0(Æ?) = 0. Thus, one needs to �nd the root of thepieewise linear funtion�0(Æ) = �wTÆ ( �w � w) + Xi2|(wÆ) idi(wÆ)( �oi � oi) (6)where o = Xw; �o = X �w.The linear piees of �0 are de�ned over those intervals where |(wÆ) re-mains onstant. Thus, the break points our at a ertain set of values Æiwhere wTÆixi = yi for some data point indexed by i, i.e Æi = yi�oi�oi�oi = 1�yioiyi(�oi�oi) .Among these values, one needs to only onsider those indies i where Æi � 0i.e if i 2 |(w) (then yioi < 1), so yi(�oi�oi) > 0 or if i =2 |(w) (then yioi > 1),so yi(�oi�oi) < 0. When Æ is inreased past a Æi, in the former ase the indexi leaves |(w) and in the latter ase it enters |(w). Reordering the indies sothat Æi are sorted in a non-dereasing order as Æj1 ; Æj2 : : :, the root is theneasily heked in eah interval (Æjk ; Æjk+1); k = 1; 2 : : : by keeping trak ofthe slope of the linear piee in that interval. The slope is onstant for eahinterval and non-dereasing as the searh progresses through these orderedintervals. The interval in whih the slope beomes non-negative for the �rsttime brakets the root. De�ning the extension of the linear piee in theinterval (Æjk ; Æjk+1) as �0k(Æ) = �wTÆ ( �w�w)+Pi2|(wÆjk ) idi(wÆ)( �oi�oi), theslope and the root omputations are onveniently done by keeping trak ofL = �0k(0) = �wT ( �w � w) +Pi2|(wÆjk ) i(oi � yi)( �oi � oi) and R = �0k(1) =� �wT ( �w � w) +Pi2|(wÆjk ) i(�oi � yi)( �oi � oi). The full line searh routine isoutlined in Table 3. 8



Table 1 provides an abridged pseudo-ode for L2-SVM-MFN. See [15℄ fornumerous other details. L2-SVM-MFN alternates between alls to CGLSand line searhes. Its omputational omplexity therefore is O(tmfn�tglsn0)where tmfn is the number of outer iterations of CGLS alls and line searh,and �tgls is the average number of CGLS iterations. These depend on thedata set and the tolerane desired in the stopping riterion, but are typiallyvery small5. Therefore, the omplexity is found to be e�etively linear inthe number of entries in the data matrix.3 Semi-supervised Linear SVMsWe now assume we have l labeled examples fxi; yigli=1 and u unlabeledexamples fx0jguj=1 with xi; x0j 2 Rd and yi 2 f�1;+1g. Our goal is toonstrut a linear lassi�er sign(wTx) that utilizes unlabeled data, typiallyin situations where l � u. We present semi-supervised algorithms thatprovide L2-SVM-MFN the apability of dealing with unlabeled data.3.1 Transdutive SVMTransdutive SVM, originally proposed in [19℄, appends an additional termin the SVM objetive funtion whose role is to drive the lassi�ation hy-perplane towards low data density regions. Variations of this idea haveappeared in the literature [10, 1, 9℄. Sine [10℄ appears to be the most nat-ural extension of standard SVMs among these methods, and is popularlyused in Text lassi�ation appliations, we will fous on developing its largesale implementation.The following optimization problem is setup for standard TSVM6:w? = argminw2Rd;fy0j2f�1;+1gguj=1 �2kwk2 + 12l lXi=1 max �0; 1� yi (wTxi)�+ �02u uXj=1max �0; 1� y0j (wTx0j)�subjet to: 1u uXj=1max �0; sign(wTx0j)� = rThe labels on the unlabeled data, y01 : : : y0u, are f+1;�1g-valued variablesin the optimization problem. In other words, TSVM seeks a hyperplanew and a labeling of the unlabeled examples, so that the SVM objetive5For example, [15℄ reports a text lassi�ation experiment involving 198788 examplesand 252472 features where tmfn = 11; �tgls = 102.6The bias term is typially exluded from the regularizer, but this fator is not expetedto make any signi�ant di�erene. 9



funtion is minimized, subjet to the onstraint that a fration r of theunlabeled data be lassi�ed positive. SVM margin maximization in thepresene of unlabeled examples an be interpreted as an implementation ofthe luster assumption. In the optimization problem above, �0 is a user-provided parameter that provides ontrol over the inuene of unlabeleddata 7. If there is enough labeled data, �; �0; r an be tuned by ross-validation. An initial estimate of r an be made from the fration of labeledexamples that belong to the positive lass and subsequent �ne tuning anbe done based on performane on a validation set.This optimization is implemented in [10℄ by �rst using an indutive SVMto label the unlabeled data and then iteratively swithing labels and retrain-ing SVMs to improve the objetive funtion. The TSVM algorithm wrapsaround an SVM training proedure. The original (and widely popular) im-plementation of TSVM uses the SVM-Light software. There, the trainingof SVMs in the inner loops of TSVM uses dual deomposition tehniques.As shown by experiments in [15℄, in sparse, linear settings one an obtainsigni�ant speed improvements with L2-SVM-MFN over SVM-Light. Thus,by implementing TSVM with L2-SVM-MFN, we expet similar improve-ments for semi-supervised learning on large, sparse datasets. As we will see,the L2-SVM-MFN retraining steps in the inner loop of TSVM are typiallyexeuted extremely fast by using seeding tehniques. Additionally, we alsopropose a version of TSVM where more than one pair of labels may beswithed in eah iteration. These speed-enhanement details are disussedin the following subsetions.3.1.1 Implementing TSVM Using L2-SVM-MFNTo develop the TSVM implementation with L2-SVM-MFN, we need to on-sider the objetive funtion orresponding to Eqn. 7 but with the L2 lossfuntion:w? = argminw2Rd;fy0j2f�1;+1gguj=1 �2 kwk2 + 12l lXi=1 max �0; 1 � yi (wTxi)�2+ �02u uXj=1max �0; 1� y0j (wTx0j)�2subjet to: 1u uXj=1max �0; sign(wTx0j)� = r (7)7Suppose, the data has distint lusters with a large margin, but the luster assumptiondoes not hold i.e the labeling given by the supervised lassi�er is atually the true labelingeven though it uts the lusters. In suh ases, �0 an be set to 0 and standard SVM isretrieved. In general, �0 needs to be tuned for eah data set.10



Figure 1: L2 Loss funtion over unlabeled examples for Transdutive SVM
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Note that this objetive funtion above an also be equivalently writtenin terms of the following loss over eah unlabeled example x:min�max �0; 1� (wTx)�2 ;max �0; 1 + (wTx)�2� = max �0; 1 � jwTxj�2Here, we pik the value of the label variable y that minimizes the loss onthe unlabeled example x, and rewrite in terms of the absolute value of theoutput of the lassi�er on x. This loss funtion is shown in Fig. 1. We note inpassing that, L1 and L2 loss terms over unlabeled examples are very similaron the interval [�1;+1℄. The non-onvexity of this loss funtion impliesthat the TSVM training proedure is suseptible to loal optima issues. Inthe next setion, we will outline a mean �eld annealing proedure that anoverome this problem.The TSVM algorithm with L2-SVM-MFN is outlined in Table 4 andlosely follows the presentation in [10℄8. A lassi�er is obtained by �rstrunning L2-SVM-MFN on just the labeled examples. Temporary labels areassigned to the unlabeled data by thresholding the soft outputs of this las-si�er so that the fration of the total number of unlabeled examples thatare temporarily labeled positive equals the parameter r.Then starting from a small value of �0, the unlabeled data is graduallybrought in by inreasing �0 by a fator of 2 in the outer loop. This gradualinrease of the inuene of the unlabeled data is a way to protet TSVMfrom being immediately trapped in a loal minimum. An inner loop identi�espairs of unlabeled examples with positive and a negative temporary labelssuh that swithing these labels would derease the objetive funtion. L2-SVM-MFN is then retrained with the swithed labels.8A minor di�erene is that in our implementation, we did not use separate ost fatorsfor balaning loss terms for the positive and negative lass11



3.1.2 Multiple SwithingThe TSVM algorithm presented in [10℄ involves swithing a single pair oflabels. We propose a variant where upto S pairs are swithed suh that theobjetive funtion improves. Here, S is a user ontrolled parameter. SettingS = 1 reovers the original TSVM algorithm, whereas setting S = u=2swithes as many pairs as possible in the inner loop (Loop 2 in Table 4) ofTSVM. The implementation is onveniently done as follows:1. Identify unlabeled examples with ative indies and urrently positivelabels. Sort orresponding outputs in asending order. Let the sortedlist be L+.2. Identify unlabeled examples with ative indies and urrently negativelabels. Sort orresponding outputs in desending order. Let the sortedlist be L�.3. Pik pairs of elements, one from eah list, from the top of these listsuntil either a pair is found suh that the output from L+ is greaterthan the output from L�, or if S pairs have been piked.4. Swith the urrent labels of these pairs.Using arguments similar to Theorem 2 in [10℄ we an show that Transdu-tive L2-SVM-MFN with multiple-pair swithing onverges in a �nite numberof steps.Proposition: Transdutive L2-SVM-MFN with multiple-pair swithingonverges in �nite number of steps.Proof: The outer loop (marked Loop 1 in Table 4) learly terminatesin �nite number of steps. Eah all to L2-SVM-MFN terminates in �nitenumber of iterations due to Theorem 1 in [15℄. We only need to showthat Loop 2 also has �nite termination. Let J(w; Y 0) be the value of theTSVM objetive funtion for some andidate weight vetor w and andidatelabel vetor Y 0 = [y01 : : : y0u℄ over the unlabeled data. Let w(Y 0); Y 0 be theoperating variables at the end of an iteration of loop 2 where w(Y 0) =argminw2Rd J(w; Y 0). After swithing labels, let the new operating labelvetor be Y 00. It is easy to see that:J(w(Y 0); Y 0) > J(w(Y 0); Y 00) � J(w(Y 00); Y 00)The seond inequality follows sine w(Y 00) minimizes J(w; Y 00) over all w.To see the �rst inequality observe that for any pair of data points (say withindies i; j) whose labels are swithed, the following onditions are satis�ed:y0i = 1; y0j = �1; w(Y 0)Tx0i < 1;�w(Y 0)Tx0j < 1; w(Y 0)Tx0i < w(Y 0)Tx0j.12



The terms ontributed by this pair to the objetive funtion derease afterswithing labels sine the swithing onditions imply the following:max[0; 1� wTx0i℄2 +max[0; 1 + wTx0j ℄2 = (1� wTx0i)2 + (1 + wTx0j)2> (1 +wTx0i)2 + (1� wTx0j)2 � max[0; 1 + wTx0i℄2 +max[0; 1� wTx0j℄2Thus, swapping the labels of multiple pairs that satisfy the swithing on-ditions redues the objetive funtion.Sine at the end of onseutive iterations J(w(Y 0); Y 0) > J(w(Y 00); Y 00),Loop 2 must terminate in �nite number of steps beause there are only a�nite number of possible label vetors. �We are unaware of any prior work that suggests and evaluates this simpleheuristi of swithing more than one label. Our experimental results insetion 4 establish that this heuristi is very e�etive in speeding up TSVMtraining while maintaining generalization performane on textual problems.3.1.3 SeedingThe e�etiveness of L2-SVM-MFN on large sparse datasets ombined withthe eÆieny gained from seeding w in the re-training steps (after swithinglabels or after inreasing �0) make this algorithm quite attrative. Consideran iteration in Loop 2 of TSVM where a new pair of labels has been swithed,and the solution w from the last retraining of L2-SVM-MFN (marked as Re-training 2 in Table 4) is available for seeding. Aording to Theorem 1 in[15℄, when the last L2-SVM-MFN onverged, its solution w is given by thelinear system9: h�I +XTI(w)CI(w)XI(w)iw = XTI(w)CI(w)Ywhere Y is the urrent label vetor. When labels Yi; Yj are swithed, bakat the top of loop 2, the label vetor is updated as:Y = Y + 2eijwhere eij is a vetor whose elements zero everywhere exept in the ith andthe jth position whih are +1 and -1 or -1 and +1 respetively. Note alsothat if i; j 2 |(w) the re-training of L2-SVM-MFN with w as the startingguess immediately enounters a all CGLS to solve the following perturbedsystem: h�I +XT|(w)C|(w)X|(w)i ~w = XT|(w)C|(w) [Y + 2eij ℄9The subsequent line searh does not hange this w; therefore, the optimality onditionsare heked immediately after the CGLS step13



The starting residual vetor r0 is given by:r0 = XT|(w)C|(w) [Y + 2eij ℄� h�I +XT|(w)C|(w)X|(w)iw= r(w) + 2XT|(w)C|(w)eij� �+ 2�0kxi � xjkwhere r(w) in the seond step is the �nal residual of w whih fell below � atthe onvergene of the last re-training. In appliations like Text ategoriza-tion, TFIDF feature vetors are often length normalized and have positiveentries. Therefore, kxi � xjk � p2. This gives the following bound on thestarting residual: r0 � �+ 2p2�0whih is muh smaller than a bound of npn�0 with a zero starting vetor.Seeding is quite e�etive for Loop 1 as well, where �0 is hanged, as demon-strated by experiments in [15℄. With the two additional loops, the omplex-ity of Transdutive L2-TSVM-MFN beomes O(nswithes�tmfn�tglsn0), wherenswithes is the number of label swithes. The outer loop exeutes a �xednumber of times; the inner loop alls L2-TSVM-MFN nswithes times. Typ-ially, nswithes is expeted to strongly depend on the data set and also onthe number of labeled examples. Sine it is diÆult to apriori estimate thenumber of swithes, this is an issue that is best understood from empirialobservations.3.2 Mean Field AnnealingThe transdutive SVM loss funtion over the unlabeled examples an be seenfrom Fig. 1 to be non-onvex. This makes the TSVM optimization proeduresuseptible to loal minimum issues ausing a loss in its performane in manysituations, e.g as reorded in [6℄. We now present a new algorithm based onmean �eld annealing that an potentially overome this problem while alsobeing omputationally very attrative for large sale appliations.Mean Field Annealing [14, 3, 4℄ (MFA) is an established tool for ombina-torial optimization that approahes the problem from information theoretipriniples. The disrete variables in the optimization problem are relaxed toontinuous probability variables and a non-negative temperature parameterT is used to trak the global optimum.We begin by re-writing the TSVM objetive funtion as follows:w? = argminw2Rd;f�j2f0;1gguj=1 �2 kwk2 + 12l lXi=1 max �0; 1 � yi (wTxi)�2+ �02u uXj=1 ��j max �0; 1 � (wTx0j)�2 + (1� �j)max �0; 1 + (wTx0j)�2�14



Here, we introdue binary valued variables �j = (1 + yj)=2. Let pj 2 [0; 1℄denote the belief probability that the unlabeled example x0j belongs to thepositive lass. The Ising model 10 of Mean �eld annealing motivates thefollowing objetive funtion, where we relax the binary variables �j to prob-ability variables pj, and inlude entropy terms for the distributions de�nedby pj:w?T = argminw2Rd;fpj2[0 1℄guj=1 �2 kwk2 + 12l lXi=1 max �0; 1� yi (wTxi)�2+ �02u uXj=1 �pj max �0; 1� (wTx0j)�2 + (1 � pj)max �0; 1 + (wTx0j)�2�+ T2u uXj=1 (pj log pj + (1� pj) log (1� pj)) (8)Here, the \temperature" T parameterizes a family of objetive funtions.The objetive funtion for a �xed T is minimized under the following lassbalaning onstraints: 1u uXj=1 pj = r (9)where r is the fration of the number of unlabeled examples belonging tothe positive lass. As in TSVM, r is treated as a user-provided parameter.It may also be estimated from the labeled examples.The solution to the optimization problem above is traked as the tem-perature parameter T is lowered to 0. The �nal solution is given as:w? = limT!0w?T (10)In pratie we monitor the value of the objetive funtion in the optimizationpath and return the solution orresponding to the minimum value ahieved.To develop an intuition for the working on this method, we onsider theloss term in the objetive funtion assoiated with an unlabeled exampleas a funtion of the output of the lassi�er. This loss term is based onalulations to be desribed below. Fig. 2 plots this loss term for variousvalues of T . As the temperature is dereased, the loss funtion deformsfrom a squared-loss shape where a global optimum is easier to ahieve, tothe TSVM loss funtion in Fig. 1. At high temperatures a global optimumis easier to obtain. The global minimizer is then slowly traked as thetemperature is lowered towards zero.10A multilass extension would use the Potts glass model. There, one would have toappend the entropy of the distribution over multiple lasses to a multi-lass objetivefuntion. 15



Figure 2: L2 Loss funtion over unlabeled examples for Transdutive SVM
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Decreasing Temperature

The optimization is done in stages, starting with high values of T andthen gradually dereasing T towards 0. For eah T , the problem in Eqns.8,9 is optimized by alternating the minimization over w and p = [p1 : : : pu℄respetively. Fixing p, the optimization over w is done by L2-SVM-MFN.Fixing w, the optimization over p an also be done easily as desribed below.Both these problems involve onvex optimization and an be done exatlyand eÆiently. We now provide the details of these optimization steps.3.2.1 Optimizing wWe desribe the steps to eÆiently implement the L2-SVM-MFN loop foroptimizing w keeping p �xed. The all to L2-SVM-MFN is made on the dataX̂ = �XT X 0T X 0T �T whose �rst l rows are formed by the labeled examples,and the next 2u rows are formed by the unlabeled examples appearing astwo repeated bloks. The assoiated label vetor and ost matrix are givenby Ŷ = [y1; y2:::yl; uz }| {1; 1; :::1; uz }| {�1;�1::: � 1℄C = diag 2664 lz }| {1l :::1l ; uz }| {�0 p1u :::�0 puu uz }| {�0(1� p1)u :::�0(1� pu)u 3775 (11)Even though eah unlabeled data ontributes two terms to the objetivefuntion, e�etively only one term ontributes to the omplexity. This isbeause matrix-vetor produts, whih form the dominant expense in L2-SVM-MFN, are performed only on unique rows of a matrix. The output16



may be dupliated for dupliate rows. Infat, we an re-write the CGLSalls in L2-SVM-MFN so that the unlabeled examples appear only one inthe data matrix. Consider the CGLS all at some iteration where the ativeindex set is | = |(w) for some urrent andidate weight vetor w:h�I + X̂T| C|X̂|i �w = X̂TC|Ŷ| (12)Note that if jwTx0j j � 1, the unlabeled example x0j appears as one rowin the data matrix X̂| with label given by �sign(wTx0j). If jwTx0j j < 1, theunlabeled example x0j appears as two idential rows X̂| with both labels. Let|l 2 1 : : : l be the indies of the labeled examples in the ative set, |01 2 1 : : : ube the indies of unlabeled examples with jwTx0jj � 1 and |02 2 1 : : : u be theindies of unlabeled examples with jwTx0jj < 1. Note that the index of everyunlabeled example appears in one of these sets i.e, |01 [ |02 = 1 : : : u. Eqn. 12may be re-written as:24�I + 1l Xi2|l xTi xi + �0u Xj2|01 jx0Tj xj + �0u Xj2|02 x0Tj xj35 �w =1l Xi2|l yixi � �0u Xj2|01 jsign(wTxj)xj + �0u Xj2|02(2pj � 1)xjwhere j = pj if sign(wTx0j) = �1 and j = 1 � pj if sign(wTx0j) = 1. Re-writing in matrix notation, we obtain an equivalent linear system that anbe solved by CGLS: h�I + ~XT ~C ~Xi �w = ~XT ~C ~Y (13)where ~X = [XT|l X 0℄, ~C is a diagonal matrix and ~Y is the vetor of e�etivelyative labels. These are de�ned by:~Cjj = 1l ; ~Yj = yi j 2 1 : : : j|lj~C(j+j|lj)(j+j|lj) = �0pju ; ~Yj+j|lj = 1 if j 2 1 : : : u ; j 2 |01; sign(wTx0j) = �1~C(j+j|lj)(j+j|lj) = �0(1� pj)u ; ~Yj+j|lj = �1 if j 2 1 : : : u j 2 |01; sign(wTx0j) = 1~C(j+j|lj)(j+j|lj) = �0u ; ~Yj+j|lj = (2pj � 1) if j 2 1 : : : u j 2 |02 (14)Thus, CGLS needs to only operate on data matries with one instaneof eah unlabeled example using a suitably modi�ed ost matrix and labelvetor. 17



After the CGLS step, one needs to hek the optimality onditions. Theoptimality onditions an be re-written as:8 i 2 |l yi�oi � 1 + �8 i 2 |l yi �oi � 1� �8 j 2 |01 j�o0j j � 1� �8 j 2 |02 j�o0j j � 1 + �For the subsequent line searh step, we reassemble appropriate output andlabel vetors to all the routine in Table 3. The steps for optmizing w areoutlined in Table 7.3.2.2 Optimizing pFor the latter problem of optimizing p for a �xed w, we onstrut the La-grangian:L = �02u uXj=1 �pj max �0; 1 � (wTx0j)�2 + (1� pj)max �0; 1 + (wTx0j)�2�+ T2u uXj=1 (pj log pj + (1� pj) log (1� pj))� � 241u uXj=1 pj � r35Di�erentiating the Lagrangian with respet to pj , we get:� L�pj = �02u �max �0; 1 � (wTx0j)�2 �max �0; 1 + (wTx0j)�2�+ T2u log pj1� pj��u = 0De�ne: gj = �0 �max �0; 1� (wTx0j)�2 �max �0; 1 + (wTx0j)�2�Then, the expression for pj is given by:pj = 11 + e gj�2�T (15)Substituting this expressing in the balane onstraint in Eqn. 9, we get aone-dimensional non-linear equation in 2�:1u uXj=1 11 + e gi�2�T = rThe value of 2� is omputed exatly by using a hybrid ombination ofNewton-Raphson iterations and the bisetion method to �nd the root of18



the funtion B(�) = 1u Pl+ui=l+1 11+e gi��T � r. This method is rapid due to thequadrati onvergene properties of Newton-Raphson iterations and fail-safedue to bisetion steps. Note that the root exists and is unique, sine onean see that B(�) ! 1 � r > 0 when � ! 1, B(�) ! �r < 0 when� ! �1, and B(�) is a ontinuous, monotonially inreasing funtion (seeFig.3). The root �nding begins by braketing the root in the interval [��; �+℄so that B(��) < 0; B(�+) > 0 where ��; �+ are given by:�� = min(g1 : : : gu)� T log 1� rr�+ = max(g1 : : : gu)� T log 1� rrThe hybrid root �nding algorithm performs Newton-Raphspon iterationswith a starting guess of ��+�+2 and invokes the bisetion method wheneveran iterate goes outside the brakets. The steps for optimizing p are outlinedin Table 6.Figure 3: The value of B(�) = 1u Pl+ui=l+1 11+e gi��T � r as a funtion of �.Here, T = 1; r = 0:15; gi 2 [�5; 5℄. The root is marked on the plot.
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3.2.3 Stopping CriteriaFor a �xed T , this alternate minimization proeeds until some stopping rite-rion is satis�ed. A natural riterion is the mean Kullbak-Liebler divergene(relative entropy)11 KL(p; q) between urrent values of pi and the values,say qi, at the end of last iteration. Thus the stopping riterion for �xed T11Other distane measures e.g eulidean distane may also be used instead.19



is: KL(p; q) = uXj=1 pj log pjqj + (1� pj) log 1� pj1� qj < u� (16)A good value for � is 10�6. The temperature may be dereased in the outerloop until the total entropy falls below a threshold, whih we take to be� = 10�6 as above.H(p) = � uXj=l (pj log pj + (1� pj) log (1� pj)) < u� (17)Note that we set upper limits on the total number of iterations in bothloops. Often the entropy may onverge to a value larger than the stoppingthreshold and the outer loop is exited by exeeding the maximum iterationsallowed. In suh ases, due to seeding, the extra iterations add insigni�antost.The TSVM objetive funtion is monitored as the optimization proeeds.J(w) = �2 kwk2 + 12l lXi=1 max �0; 1� yi (wTxi)�2+ �02u uXj=1max �0; 1 � jwTx0j j�2 (18)The weight vetor orresponding to the minimum transdutive ost in theoptimization path is returned as the solution.The steps of mean �eld annealing with L2-SVM-MFN are outlined inTable 5.4 Empirial StudySemi-supervised learning experiments were onduted to test these algo-rithms on six text binary lassi�ation problems. These are listed in Table 8.Table 8: Two-lass datasets used in the experiments : d is the data dimen-sionality, �n0 is the average number of non-zero entries per example vetor,l + u is the number of labeled and unlabeled examples, t is the number oftest examples. Dataset d �n0 l + u tauto-vs-aviation 20707 51.32 35588 35587real-vs-simulated 20958 51.32 36155 36154at 47236 75.93 17332 5787gat 47236 75.93 17332 578733-vs-36 59072 26.56 41346 41346pma 7511 54.58 1460 48620



The auto-vs-aviation and real-vs-simulated binary lassi�ation datasetsome from a olletion of UseNet artiles 12 from four disussion groups, forsimulated auto raing, simulated aviation, real autos, and real aviation13.The at and gat data sets pose the problem of separating orporate andgovernement related artiles respetively; these are the top-level ategoriesin the RCV1 training data set [11℄. These data sets reate an interestingsituation where semi-supervised learning is required to learn di�erent lowdensity separators respeting di�erent lassi�ation tasks in the same inputspae. The 33-vs-36 data set is a subset of a multilass Yahoo shoppingdata set. Finally, the pma data set is a small subset of the 20-newsgroupsdata popularly used in semi-supervised learning literature (e.g in [6, 16℄).The results below are averaged over 10 random14 splits of training (labeledand unlabeled) and test sets. The amount of labeled data in the trainingset was gradually varied to generate learning urves. We use a default valueof �0 = 1 for all datasets exept15 for auto-vs-aviation and at where�0 = 10. The default value of � = 0:001 was used for all datasets.Minimization of Objetive FuntionWe �rst examine the e�etiveness of TSVM and MFA in optimizing theTSVM objetive funtion. In Figure 4, we plot the minimum value of theobjetive funtion ahieved by TSVM and MFA with respet to varyingnumber of labels. As ompared to TSVM, we see that MFA performs sig-ni�antly better optimization on auto-vs-aviation, at, and pma datasetsand slightly better optimization on the other datasets.Transdution Learning CurvesIn Figures 5, 6, 7 we plot error rates over unlabeled examples for SVM,TSVM and MFA with respet to varying amounts of labeled data.The following observations an be made:1. Comparing the learning urves for SVM against the semi-supervisedalgorithms, the bene�t of unlabeled data is evident on all datasets,and is partiularly striking on auto-vs-aviation, real-vs-simulated, gat,and pma.2. On auto-vs-aviation and pma , MFA outperforms TSVM signif-iantly. On at, MFA performs a muh better optimization butthis only translates into slight error rate improvements. MFA and12available at http://www.s.umass.edu/�mallum/data/sraa.tar.gz13We used the RAINBOW software [13℄ to generate feature vetors after removingwords that only appear in 10 or fewer douments.14The lass ratios are maintained in these splits.15This produed better results for both TSVM and MFA. A areful optimization of �0was not attempted. 21



Figure 4: Minimum value of objetive funtion ahieved by MFA and Trans-dutive L2-SVM-MFN with respet to number of labels.
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TSVM are very losely mathed on gat and 33-vs-36 . On real-vs-simulated dataset, TSVM and MFA perform very similar optimizationof the transdution objetive funtion (see Figure 4), but appear toreturn very di�erent solutions. The TSVM solution returns lower errorrates as ompared to MFA on this dataset.3. For TSVM, on all datasets we found that multiple swithing returnednearly idential performane as single swithing. Sine it saves signif-iant omputation time, our study establishes multiple swithing as avaluable heuristi for appliations of TSVM.Out-of-Sample Learning CurvesIn Figures 8, 9, 10 we plot error rates over unseen test examples for SVM,TSVM and MFA with respet to varying amounts of labeled data. Com-paring with learning urves for transdution, we see the observations in theprevious setion are also true for out-of-sample performane. Both TSVMand MFA provide high quality extension to unseen test data.
22



Figure 5: Transdution error rate with respet to number of labels
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Computational TimingsIn Figure 11, we plot the average omputation time for MFA and TSVMwith 1, 10, 100 and maximum swithing. The following observations an bemade:1. The standard single swith TSVM is an order of magnitude slowerthan the multiple swithing variant.2. MFA takes a moderate amount of time. It is signi�antly faster thansingle swith TSVM and typially slower than TSVM with maximumswithing.3. The TSVM omputation time is more strongly dependent on the num-ber of labels than MFA.Comparison with SVMlightIn Table 9, we ompare our implementations with SVMlight at its defaultoptimization settings on the �rst split at the lowest end of the learningurves. These omparisons demonstrate massive speedups with our methodsover the dual tehniques used in SVMlight.Note that the results presented in this setion were obtained with aMATLAB implementation with a C interfae to the ore CGLS routine. Inour experiments, the omputational di�erene between single and multipleswithing may have been somewhat exaggerated due to implementation in23



Figure 6: Transdution error rate with respet to number of labels
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MATLAB (sine single swithing involves more non-vetorized loops whihare not optimized in MATLAB). We expet signi�antly faster omputationtimes with a full C or a fortran implementation, espeially with parallelomputation of matrix vetor produts.Table 9: Speed (in seonds) and error rate omparisons with SVMlight. S=1and S=max denote single and multiple-swithing implementations of TSVMwith the modi�ed �nite newton proedure.Dataset SVMlight S=1 S=max MFAauto-vs-aviation time 101759 5849 390 1446error rate 0.0664 0.0576 0.0575 0.0595real-vs-simulated time 498313 6244 373 1129error rate 0.1589 0.1430 0.1426 0.1460at time 13540 2352 390 1185error rate 0.4071 0.2098 0.2081 0.1861gat time 243840 1267 358 159error rate 0.0665 0.0646 0.0639 0.059133-vs-36 time 48390 7406 309 393error rate 0.2290 0.2140 0.2136 0.2206pma time 167 4 2 12error rate 0.0597 0.0782 0.0802 0.0556
24



Figure 7: Transdution error rate with respet to number of labels
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Importane of AnnealingTo on�rm the neessity of an annealing omponent (traking the minimizerwith respet to T ) in the optimization, we ompare MFA with the alternatingw,p optimization proedure where the temperature parameter is held �xedat T = 1 and T = 0:1. In Figure 12 we plot the minimum value of theobjetive funtion ahieved with and without annealing. The orrespondinglearning urves are plotted in Figure 13. We see that annealing provideshigher quality solutions as ompared to �xed temperature optimization.It is important to note that the gradual inrease of �0 to the user-setvalue in TSVM is also a mehanism to avoid loal optima. The non-onvexpart of the objetive funtion is gradually inreased to a desired value. Inthis sense, �0 simultaneously plays the role of an annealing parameter andalso ontrols the strength of the luster assumption. This dual role has theadvantage that a suitable �0 an be hosen by monitoring performane ona validation set as the algorithm proeeds. In MFA, however, we diretlyuse an established framework for global optimization of a non-onvex obje-tive funtion, deoupling annealing from the implementation of the lusterassumption. As our experiments show, this an lead to signi�antly bettersolutions on many problems.
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Figure 8: Test error rate with respet to number of labels
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Figure 9: Test error rate with respet to number of labels
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Figure 10: Test error rate with respet to number of labels
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Figure 11: Computation time with respet to number of labels for MFA andTransdutive L2-SVM-MFN with single and multiple swithes.
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Figure 12: Minimum value of objetive funtion ahieved by MFA and a�xed temperature optimization with respet to number of labels.
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Figure 13: Error Rates ahieved by MFA and a �xed temperature optimiza-tion with respet to number of labels.
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5 Extensions and AppliationsIn this setion, we ollet our thoughts on various extensions and applia-tions of the methods proposed in this paper, and outline some diretions forfuture work.Non-linear Mean Field AnnealingIn many problems of interest one needs to onstrut omplex, non-linearlassi�ation boundaries. The MFA algorithm an be extended to oper-ate in a non-linear Reproduing Kernel Hilbert Spae (RKHS) of funtionsHK de�ned by a kernel funtion K. Spei�ally, we solve an optimizationproblem of the following kind:f?T = argminf2HK ;fpj2[0 1℄guj=1 �2 kfk2K + 1l lXi=1 V (yi; xi; f)+�0u uXj=1 �pjV (1; x0j ; f) + (1� pj)V (�1; x0j ; f)�+Tu uXj=1 (pj log pj + (1� pj) log (1� pj)) subjet to: 1u uXj=1 pj = rHere, V (y; x; f) is a loss funtion and kfkK is the norm of f in the RKHSHK . Annealing is performed by taking the limit f? = limT!0 f?T .By the representer theorem, the solution to the above problem, for �xedp, is given as: f?T (p) = l+uXi=1 �iK(x; xi)where the expansion oeÆients �i depend on both T and p. Non-linearMFA an be easily implemented for a variety of loss funtions. For example,if the loss funtion V is ontinously di�erentiable, one an use a non-linearversion of the modi�ed �nite newton proedure to optimize the l+u primalvariables �. Alternatively, for the hinge loss V (y; x; f) = max [0; 1� yf(x)℄,one an use a standard implementation of sequential minimal optimization(SMO). This optimization is then alternated with optimization of p givenby a derivation similar to that in setion 3.2.2. In an outer loop, the tem-perature is gradually redued.An interesting family of hybrid algorithms an be developed that runnon-linear MFA with a lass of kernels [16℄ that are adapted for semi-supervised learning, based on geometri strutures of the data estimatedusing a data-adjaeny graph. The bene�ts of a hybrid approah that om-bines graph-based semi-supervised learning with TSVM-style optimizationhas been noted in [6℄. The former tehniques provide data representations29



and omplexity notions that are better suited for semi-supervised learning,and the latter tehniques omplement these with expliit optimization overthe unknown labels.One-Class Problems, Clustering and Fully Supervised Learn-ingTSVM and MFA an be deployed in a variety of settings involving di�erentamounts of labeled and unlabeled data. Many real world settings presentthe task of identifying members of a ertain lass as opposed to distinguish-ing between well-spei�ed lasses. For example, in order to identify webdouments onerning sports, it is muh easier to label sports doumentsthan to label the diverse and ill-haraterized set of non-sports douments.In suh problems, labeled examples ome from a single lass, very often withlarge amounts of unlabeled data ontaining some instanes of the lass ofinterest and many instanes of the \others" lass.Being a speial ase of semi-supervised learning, the problem of one-lasslearning with unlabeled data an be addressed by the algorithms developedin this paper. Reall that these algorithms implement the luster assumptionunder onstraints on lass ratios. For one-lass problems, unlabeled datais expeted to be helpful in biasing the lassi�ation hyperplane to passthrough a low density region keeping lusters of the relevant lass on oneside and instanes of the \others" lass on the other side.A novel lass of linear lustering algorithms may arise by adapting ouralgorithms for the extreme ase where no labels are available. At the otherextreme of fully supervised learning, one may utilize MFA ideas for opti-mizing non-onvex loss funtions loser to the misslassi�ation (zero-one)loss (as ompared to e.g the hinge loss), yielding algorithms with possi-bly superior generalization performane and better sparsity properties. See[7℄ for some reent work on regularization algorithms with non-onvex lossfuntions.Referenes[1℄ K. Bennett and A. Demirez (1998),Semi-Supervised Support Vetor Ma-hines NIPS 1998[2℄ D.Bertsekas ,Nonlinear Programming, Athena Sienti�, 1995, (2ndEdition, 1999),[3℄ G Bilbro, R Mann, TK Miller, WE Snyder, DE Van den, Optimizationby Mean Field Annealing, NIPS 1989
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Table 1: L2-SVM-MFNProblem Given l labeled examples fxi; yigli=1 where xi 2 Rd ; yi 2 f�1;+1g and aost for eah example figli=1, Solve:w? = argminw2Rd 12 lXi=1 imax �0; 1� yi (wTxi)�2 + �2 kwk2De�ne X = [x1 : : : xl℄T 2 Rl�d ; Y = [y1 : : : yl℄T 2 Rl�1C 2 Rl�l : a diagonal matrix with Cii = iw 2 Rd : (a guess for the solution)If a guess is available, it is also onvenient to pass:o = Xw | = fi : yioi < 1g | = fi : i 2 |gInputs X;Y;C; � and w; o; |; | (if available)Initialize if w; o unavailable (or set as zero vetors) set w = 0 2 Rd ; o = 0 2Rl ; � = 10�2; gitermax = 10; | = 1 : : : l; | = �if w; o; |; | are available, set � = 10�6; gitermax = 10000� = 10�6 iter = 0 itermax = 50Iterate while (iter < itermax)iter=iter+1( �w; �o|; opt) = CGLS(X|; Y|; C|; w; o|; �; gitermax) (see table 2)�o| = X| �wIf gitermax=10 reset gitermax = 10000if (opt = 1;8 i 2 | yi�oi � 1 + � ; 8 i 2 | yi�oi � 1� �)If � = 10�2 reset � = 10�6 andontinue the while loop iterations.Else set w = �w o = �oand exit the while loop.end ifÆ = LINE-SEARCH(w; �w; o; �o; Y; C) (see table 3)w = w + Æ( �w � w)o = o+ Æ(�o � o)| = fi 2 1 : : : l : yioi < 1g | = fi 2 1 : : : l : i =2 |gend whileOutputs w; o; |; | 33



Table 2: CGLSProblem Given l labeled examples fxi; yigli=1 where xi 2 Rd ; yi 2 f�1;+1gand a ost for eah example figli=1, Solve:�? = argmin�2Rd 12 lXi=1 i �yi � �Txi�2 + �2 k�k2Equivalently Solve: ��I +XTCX��? = XTCYDe�ne X = [x1 : : : xl℄T 2 Rl�d ; Y = [y1 : : : yl℄T 2 Rl�1C 2 Rl�l : a diagonal matrix with Cii = i� 2 Rd : a guess for the solution (set � = 0 2 Rd if unavailable)o = X�Inputs X;Y;C; �; �; o; �; gitermaxInitialization z = C(Y � o) r = XT z � �� p = r !1 = krk2giter = 0 optimality = 0Iterate while (giter < gitermax)giter=giter + 1q = Xp = !1�kpk2+qTCq� = � + po = o+ qz = z � Cq!2 = !1r = XT z � ��!1 = krk2if (!1 < �2kzk2)Set optimality = 1 and Exit while loop.end if! = !1!2p = r + !pend whileOutputs �; o; optimality
34



Table 3: LINE-SEARCHInputs w; �w; o; �o; Y; C as de�ned in Table 1Initialize | = fi : yioi < 1gL = �wT ( �w � w) +Pi2|Cii(oi � yi)(�oi � oi)R = � �wT ( �w � w) +Pi2|Cii(�oi � yi)(�oi � oi)De�ne Æi = (yi�oi)�oi�oi for all i�1 = fÆi : i 2 |; yi(�oi � oi) > 0g�2 = fÆi : i =2 |; yi(�oi � oi) < 0g� = �1 [�2j = 0Reorder indies so that Æi 2 � are sorted in non-dereasingorder Æi1 ; Æi2 : : :.Iterate for j = 1; 2 : : :Æ0 = L+ Æij (R� L)if (Æ0 � 0)Exit for loopend ifSet s = �1 if Æij 2 �1 or s = 1 if Æij 2 �2L = L+ sCijij (oij � yij )(�oij � oij )R = R+ sCijij (�oij � yij )(�oij � oij )end forOutput Æ? = �LR�L
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Table 4: Algorithm: Transdutive L2-SVM-MFN Solves Eqn. 7Problem Given l labeled examples fxi; yigli=1 where xi 2 Rd ; yi 2 f�1;+1g andu unlabeled examples fxj 0guj=1, Solve problem in Eqn. 7.De�ne X = [x1 : : : xl℄T 2 Rl�d Y = [y1 : : : yl℄T 2 Rl�1X 0 = [x01 : : : x0u℄T 2 Rl�uo = Xw o0 = X 0wInputs X, Y , X 0, �; �0r, S (maximum number of label pairs to swith, default S=1)Initialization C 2 Rl�l : a diagonal matrix with Cii = 1lR=2w0= L2-SVM-MFN(X;Y;C)Compute o0 = X 0w0. Assign positive and negative labels to theunlabeled data in the ratio r : (1� r) respetively by thresholding o0.Put these labels in a vetor Y 0.Set �̂0 = 10�5 De�ne: X̂ = � XX 0 � Ŷ = � YY 0 �De�ne Ĉ 2 R(l+u)�(l+u) : a diagonal matrix with:Ĉii = 1l (1 � i � l) Ĉii = �̂0u (l + 1 � i � l + u)Set w = 0 2 Rd o = 0 2 Rl o0 2 Ru | = 1 : : : (l + u) | = �Iterate (Loop 1) while �̂0 < �0Re-training 1 (w; [o o0℄; |; |)= L2-SVM-MFN(X̂; Ŷ ; Ĉ; w; [o o0℄; |; |)Iterate (Loop 2) while (9 s index pairs (ik; jk)sk=1 : 1 � ik; jk � u with s � Ssuh that: Y 0ik = +1; Y 0jk = �1; o0ik < 1; �o0jk < 1; o0ik < o0jk )Swith Labels Y 0ik = �1 Y 0jk = +1 for k = 1; 2 : : : sŶ = � YY 0 �Re-training 2 (w; [o o0℄; |; |)= L2-SVM-MFN(X̂; Ŷ ; Ĉ; w; [o o0℄; |; |)end while (loop 2)Inrease �̂0 �̂0 = R�̂0Ĉii = 1l (1 � i � l) Ĉii = �̂0u (l + 1 � i � l + u)end while (loop 1)Output w
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Table 5: Algorithm: Mean Field Annealing L2-SVM-MFN. SolvesEqn. 10,8,9Problem Given l labeled examples fxi; yigli=1 where xi 2 Rd ; yi 2 f�1;+1g andu unlabeled examples fx0jguj=1, Solve for w? in Eqns 10,8,9.De�ne X = [x1 : : : xl℄T 2 Rl�d Y = [y1 : : : yl℄T 2 Rl�1X 0 = [x01 : : : x0u℄T 2 Rl�uInputs X, Y , X 0, �, �0, rInitialization T = 10 R = 1:5 � = 10�6iter1=0 itermax1 = 30 itermax = 100~X = [XT X 0T ℄Tp = [r : : : r℄T 2 Ruh = H(p) (Eqn. 16)(w; [o o0℄; |l; |1; |2) = optimize-w(X;Y; p; �; �0) (Table 7)F = J(w) (Eqn. 18)Fmin = F wmin = w o0min = o0Loop 1 while (iter1 < itermax1) AND (h > �)iter1 = iter1 + 1 iter2 = 0kl=1Loop 2 while (iter2 < itermax2) AND (kl > �)iter2 = iter2 +1q = pp = optimize-p(o0; �0; T; r) (Table 6)(w; [o o0℄; |l; |1; |2) =optimize-w(X;Y; p; �; �0; w; [o o0℄; |l; |1; |2) (Table 7)kl = KL(p; q) (Eqn. 16)F = J(w) (Eqn. 18)if F < FminFmin = F wmin = w o0min = o0end ifend while (loop 2)h = H(p)T = T=Rend while (loop 1)Output wmin
37



Table 6: optimize-p Subroutine for mean �eld annealing to optimizing p.See Table 5Inputs o0; �0; T; rCompute g = [g1 : : : gu℄where gj = �0�max h0; 1 � o0ji2 �max h0; 1 + o0ji2�Initialize � = 10�10 iter = 0 maxiter = 500�� = min(g1 : : : gu)� T log 1�rr�+ = max(g1 : : : gu)� T log 1�rr� = (�+ + ��)=2 Initial guesss = [e� (g1��)T : : : : : : e� (gu��)T ℄B(�) = 1u Pui=1 11+si � rB0(�) = 1Tu Pui=1 si(1+si)2 (if si !1, i.e larger than some upperlimit, set orresponding term to 0)Iterate while (jB(�)j > �) AND (iter < maxiter)iter=iter+1if jB0(�)j > 0�̂ = � � B(�)B0(�)end ifif (�̂ < ��) OR (�̂ > �+) OR B0(�) = 0Bisetion � = ��+�+2elseNewton-Raphson � = �̂end ifUpdate s = [e� (g1��)T : : : : : : e� (gu��)T ℄B(�) = 1u Pui=1 11+si � rB0(�) = 1Tu Pui=1 si(1+si)2 (if si ! 1, i.e larger than someupper limit, set orresponding term to 0)if B(�) < 0 set �� = � else �+ = �if j�+ � ��j < � exit while loopend whileOutput p = [ 11+s1 : : : 11+su ℄
38



Table 7: optimize-w (speialized L2-SVM-MFN routine for mean �eld an-nealing. See Table 5Inputs ~X;Y; p; �; �0 and w; [o o0℄; |l; |1; |2 (if available)Initialize if w unavailable (or set as zero vetors) set w = 0 2 Rd ; [o o0℄ =0 2 Rl+u ; � = 10�2; gitermax = 10; |l = 1 : : : l; |2 =1 : : : u; |1 = |l = �if w; [o o0℄; |l; |1; |2 are available, set � = 10�6; gitermax =10000; |l = fi 2 1 : : : l : i =2 |lg� = 10�8 iter = 0 itermax = 50Set Ŷ ; C aording to Eqn. 11Set ~Y ; ~C aording to Eqn. 14Iterate while (iter < itermax)iter=iter+1De�ne the ative index set: | = |lSfjgl+uj=l+1( �w; [�o|l �o0℄; opt) = CGLS�X|; ~Y|; C|; w; [o|l �o0℄; �; gitermax��o|l = X|l �wif gitermax=10 reset gitermax = 10000if opt = 1; 8 i 2 |l yi�oi � 1 + � ; 8 i 2 |l yi�oi � 1� �8 j 2 |l jo0j j >= 1� � 8 j 2 |2 jo0j j < 1 + �If � = 10�2 reset � = 10�6 andontinue the while loop iterations.Else set w = �w o = �oand exit the while loop.end ifÆ = LINE-SEARCH�w; �w; [o o0 o0℄; [�o �o0 �o0℄; Ŷ ; C�w = w + Æ( �w � w)o = o+ Æ(�o � o) o0 = o0 + Æ(�o0 � o0)| = fi : yioi < 1g |l = fi : i =2 |lg|1 = fj 2 1 : : : u : jo0j j >= 1g |2 = fj 2 1 : : : u : jo0j j < 1gReompute ~Y ; ~C aording to Eqn. 14end whileOutput w; [o o0℄; |l; |1; |2 39


