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Abstract

Large scale learning is often realistic only in a semi-supervised set-
ting where a small set of labeled examples is available together with
a large collection of unlabeled data. In many Information retrieval
and data mining applications, linear methods are strongly preferred
because of their ease of implementation, interpretability and empiri-
cal performance. In this work, we present a family of semi-supervised
linear support vector classifiers that are designed to handle partially-
labeled sparse datasets with possibly very large number of examples
and features. At their core, our algorithms employ modified finite
Newton techniques recently developed in [15]. Our contributions in
this paper are as follows: (a) We provide an implementation of Lin-
ear Transductive SVM (TSVM) that is significantly more efficient and
scalable than currently used dual techniques, for linear classification
problems involving large, sparse datasets. (b) We propose a variant
of TSVM that involves multiple switching of labels. Experimental re-
sults show that this variant provides an order of magnitude further
improvement in training efficiency. (c) We present a new algorithm
for semi-supervised learning based on a mean field annealing (MFA)
approach. This algorithm alleviates the problem of local minimum in
the TSVM optimization procedure while being computationally attrac-
tive. We conduct an empirical study on several document classification
tasks that confirms the value of these approaches in providing scalable
tools for semi-supervised learning in large scale settings. Finally, we
also note various extensions and applications of our methods.
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1 Introduction

Consider the following situation: In a single web-crawl, search engines like
Yahoo! and Google index billions of webpages. Only a very small fraction of
these web-pages can possibly be hand-labeled by human editorial teams and
assembled into topic directories. The remaining web-pages form a massive
collection of unlabeled documents. Each document is a sparse collection of
words and hyperlinks, highly structured by grammatical constraints, in a
very high dimensional linguistic space. It is clear that the development of
computational tools to organize large amounts of high-dimensional data with
very little human supervision is central to the goal of effective information
management in many applications.

Despite its natural and pervasive need, solutions to the problem of uti-
lizing unlabeled data with labeled examples have only recently emerged in
machine learning literature. Whereas the abundance of unlabeled data is
frequently acknowledged as a motivation in most papers, the true potential
of semi-supervised learning in large scale settings is yet to be systematically
explored. This appears to be partly due to the lack of scalable tools to han-
dle large volumes of data, and partly due to the common research practice
of demonstrating semi-supervised learning on small datasets with extremely
few labels.

Our motivation for this work is two-fold: (a) We seek to develop clas-
sification algorithms for applications involving large, possibly very high-
dimensional but sparse, partially labeled datasets. Being the rule rather
than the exception, such datasets arise routinely in numerous applications
e.g in document classification, bioinformatics and scientific computing. (b)
We seek to employ these techniques for studying semi-supervised learning in
realistic large scale settings. With these tools, one can investigate how the
geometric structure of data in a high dimensional input space interacts with
the distribution of labels and the hypothesis space for learning on real-world
problems.

In this paper, we propose extensions of linear Support Vector Machine
(SVM) for semi-supervised classification. Linear techniques are often the
method of choice in many applications due to their simplicity and inter-
pretability. When data appears in a rich high-dimensional representation,
linear functions often provide a sufficiently complex hypothesis space for
learning high-quality classifiers. This has been established e.g for document
classification with Linear SVMs in numerous studies (see e.g [5]).

Our methods are based on transductive extensions of SVM first pro-
posed in [19] and implemented with different variations in [10, 1, 9, 6]. The
key idea is to bias the classification hyperplane to pass through a low data
density region keeping points in each data cluster on the same side of the
hyperplane while respecting labels. This algorithm uses an extended SVM
objective function with a non-convex loss term over the unlabeled examples



to implement the cluster assumption in semi-supervised learning'. This idea
is of historical importance as one of the first concrete proposals for learn-
ing from unlabeled data; its popular implementation in [10] is considered
state-of-the-art in text categorization, even in the face of increasing recent
competition.

We highlight the contributions of this paper.

1. We outline an implementation for a variant of Transductive SVM [10]
designed for linear semi-supervised classification on large, sparse datasets.
As compared to currently used dual techniques (e.g in the SVM-Light
implementation of TSVM), our method exploits data sparsity and lin-
earity of the problem to provide superior scalability. Additionally, we
propose a multiple switching heuristic that further improves TSVM
training by an order of magnitude. These speed enhancements turn
TSVM into a feasible tool for large scale applications.

2. We propose a new algorithm for semi-supervised SVMs utilizing well-
established information theoretic ideas for global optimization using
mean field methods. This algorithm generates a family of objective
functions whose non-convexity is controlled by an annealing parame-
ter. The global minimizer is tracked with respect to this parameter.
This approach alleviates the problem of local minima in the TSVM
optimization procedure which results in significantly better solutions
on many problems, while also being computationally attractive.

3. We conduct an experimental study on many document classification
tasks with several thousands of examples and features. This study
clearly shows the utility of our tools for large scale problemms.

The modified finite Newton algorithm (abbreviated L2-SVM-MFN) of
Keerthi and Decoste [15] for fast training of linear SVMs is a key subroutine
for our algorithms.

This paper is arranged as follows. In section 2 we describe a slightly
modified version of Lo-SVM-MFEN algorithm to suit the description of the
semi-supervised methods (TSVM and MFA) in section 3. Experimental
results are presented in section 4. In section 5, we discuss some extensions
and applications of our methods.

2 Modified Finite Newton Linear Lo-SVM

The modified finite Newton L2-SVM method [15] (L2-SVM-MFN) is a re-
cently developed training algorithm for Linear SVMs that is ideally suited

!The assumption that points in a cluster should have similar labels. The role of unla-
beled data is to identify clusters and high density regions in the input space.



to sparse datasets with large number of examples and possibly large num-
ber of features. In a typical application like document classification, many
training documents are collected and processed into a format that is con-
venient for mathematical manipulations. For example, each document may
be represented as a collection of d features associated with a vocabulary of
d words. Theses feature may simply indicate the presence or absence of a
word (binary features), or measure the frequency of a word suitably nor-
malized by its importance (TFIDF features) (see e.g [18] for more details
and other representations). Even though the vocabulary might be large,
only a very small number of words appear in any document relative to the
vocabulary size. Thus, each document is sparsely represented as a bag of
words. A label is then manually assigned to each document identifying a
particular category to which it belongs (e.g “commercial” or not). The task
of a classification algorithm (e.g SVM) is produce a classifier that can reli-
ably identify the category of new documents based on information extracted
from training documents .

Given a binary classification problem with [ labeled examples {z;, y;}}_,
where the input patterns z; € R? (e.g a document) and the labels y; €
{+1, -1}, Ly-SVM-MFN provides an efficient primal solution to the follow-
ing SVM optimization problem:

l

w* = argmin % Z max [0,1 — y; (wTa:i)]2 + %Hw“2 (1)
weR? i=1

Here, X is a real-valued regularization parameter and sign(w*” ) is the final

classifier.

This objective function differs from the standard SVM problem in some
respects. First, instead of using the hinge loss as the data fitting term, the
square of the hinge loss (or the so-called quadratic soft margin loss function)
is used. This makes the objective function continuously differentiable, allow-
ing easier applicability of gradient techniques. Secondly, the bias term (“b”)
is also regularized. In the problem formulation of Equ. 1, it is implicitly as-
sumed that an additional component in the weight vector and a constant
feature in the example vectors have been added to indirectly incorporate the
bias. This formulation combines the simplicity of a least squares aspect with
algorithmic advantages associated with SVMs. We also note that all the dis-
cussion in this paper can be applied to other loss functions such as Huber’s
Loss and rounded Hinge loss using the modifications outlined in [15].

We will consider a version of Lo-SVM-MFEN where a weighted quadratic
soft margin loss function is used.

1 A
w”* = argmin f(w) = argmin = Z ci di (w) + = ||wl? (2)
weR? weR? 2 icy(w) 2



Here we exactly rewrite Eqn. 1 in terms of a partial summation of d;(w) =
w!'z; —y; over an index set j(w) = {i : y; (w''z;) < 1}. Additionally, the loss
associated with the i"® example has a cost ¢;. f(w) refers to the objective
function being minimized, evaluated at a candidate solution w. Note that if
the index set j(w) were independent of w and ran over all data points, this
would simply be the objective function for weighted linear regularized least
squares (RLS).

Following [15], we observe that f is a strictly convex, piecewise quadratic,
continuously differentiable function having a unique minimizer. The gradi-

ent of f at w is given by:

V flw) =X w+ Z ¢ di(w) z; =X w+ Xﬁw)C](w) [X](w)w — Y](w)]
ieg(w)

where X () is a matrix whose rows are the feature vectors of training points
corresponding to the index set j(w), Y, is a column vector containing
labels for these points, and C)(,) is a diagonal matrix that contains the
costs ¢; for these points along its diagonal.

Ly-SVM-MFN is a primal algorithm that uses the Newton’s Method for
unconstrained minimization of a convex function. The classical Newton’s
method is based on a second order approximation of the objective function,
and involves updates of the following kind:

wEHD — ) 4 5 (k) 3)

where the step size 0 € R, and the Newton direction n* € R? is given by:

=[5 ()] o)

Here, V f (w(k)) is the gradient vector and V2 f (w(k)) is the Hessian matrix
of f at w®). However, the Hessian does not exist everywhere, since f is not
twice differentiable at those weight vectors w where wlz; = y; for some
index 7.2 For this reason, a finite Newton method designed by Mangasarian
[12] works around this issue through a generalized definition of the Hessian
matrix. On the other hand, the modified finite Newton procedure [15]
proceeds as follows. The step @*) = w®) 4+ n*) in the Newton direction can
be seen to be given by solving the following linear system associated with
a weighted linear regularized least squares problem over the data subset
defined by the indices j(w(®)):

A+ XJT(w(w)CJ(w(M)XJ(w(@)] @ = X709 Cow®) Yy (4)

’In the neighborhood of such a w, the index i leaves or enters j(w). However, at
w,d;(w) = 0. So f is continuously differentiable inspite of these index jumps.



where I is the identity matrix. Once @® is obtained, w(**1 is obtained from

Eqn. 3 by setting w#+1) = w®) 4 58 (@*) —y(*)) after performing an exact
line search for 6%, i.e by exactly solving a one-dimensional minimization
problem:
5k) = argmin f (w(k) + 5(1[1(]“) — w(k))>
6>0

The modified finite Newton procedure has the property of finite conver-
gence to the optimal solution. The key features that bring scalability and
numerical robustness to Lo-SVM-MFN are: (a) Solving the regularized least
squares system of Eqn. 4 by a numerically well-behaved Conjugate Gradient
scheme [8] referred to as CGLS, which is designed for large, sparse data ma-
trices X. The benefit of the least squares aspect of the loss function comes
in here to provide access to a powerful set of tools in numerical computation.
(b) Due to the one-sided nature of margin loss functions, these systems are
required to be solved over only restricted index sets j(w) which can be much
smaller than the whole dataset. This also allows additional heuristics to
be developed such as terminating CGLS early when working with a crude
starting guess like 0, and allowing the following line search step to yield a
point where the index set 7(w) is small. Subsequent optimization steps then
work on smaller subsets of the data3.

We now outline the details of the CGLS and Line search procedures.

2.1 CGLS

The CGLS procedure solves large, sparse, weighted regularized least squares
problems of the following form:

M +XxTcx] p=X"cy (5)

The key computational issue here is to avoid the construction of the large
and dense matrix X7 CX, and work only with the sparse matrix X and the
diagonal cost matrix (stored as a vector) C.

Starting with a guess solution, £y, Conjugate Gradient performs itera-
tions of the form:

BUHY = gl) 4 @) )

where pU) is a search direction and 4\9) € R gives the step in that direction.
The residual vector (the difference vector between LHS and RHS of Eqn. 5
for a candidate 8, which is also the gradient of the associated quadratic form
evaluated at £3) is therefore updated as:

rUt) = XTOY — AL+ XTOX] pUHD = XU — 2pUHY

3 An implementation would also include heuristics 1 and 2, and some exception handling
steps as described in [15].



Here, we introduce the following intermediate vectors:

L0+ - o (Y _ Xﬁ(j-i-l)) - C (Y _ [Xﬁ(]) + fY(j)Xp(j)])
RONNOISHC)
where q(j) = Xp(j)

The optimal step-size yU) is given by:

)2 _ )2
p(])T(7I+XTCX)p(J) o )\||p(3)||2 —|—q(j)TCq(j)

Finally, the search directions are updated as:

1+1)(12
DU — G4 4 ) where ) = TN
9|2

It can be shown that these updates implicitly and incrementally construct
a conjugate basis* p? p' ... of R¢ on the fly; each candidate solution 47 is
optimal in the subspace defined by the current basis elements, converging
to the desired solution in no more (and typically much fewer) than d steps.

The CGLS iterations are terminated when the norm of the gradient
r(+1) becomes small enough relative to the norm of the iterate zUt1) or if
the number of iterations exceed a certain maximum allowable number.

The CGLS iterations are listed in Table 2. The data matrix X is only
involved in the computations through matrix vector multiplication for com-
puting the iterates ¢\9) and ). This forms the dominant expense in each
iteration (the product with C' simply scales each element of a vector). If
there are ng non-zero elements in the data matrix, this has O(ng) cost. As
a subroutine of Ly-SVM-MFN, CGLS is typically called on a small subset
of the full data set. The total cost of CGLS is O(tcqsn0) where t.q5 is
the number of iterations, which depends on the practical rank of X and is
typically found to be very small relative to the dimensions of X (number of
examples and features). The memory requirements are also minimal: only
five vectors need to be maintained, including the outputs over the currently
active set of data points. For more details on Conjugate gradient, see [2].

Finally, an important feature of CGLS is worth emphasizing. Suppose
the solution 8 of a regularizer least squares problem is available, i.e the
linear system in Eqn. 5 has been solved using CGLS. If there is a need to
solve a perturbed linear system, it is greatly advantageous in many settings
to start the CG iterations for the new system with § as the initial guess.
This is often called seeding. If the starting residual is small, CGLS can
converge much faster than with a guess of 0 vector. The utility of this feature

*A basis with mutually orthogonal elements in the sense v’ [/\I + XTCX] u = 0 for
any pair of elements u, v.



depends on the nature and degree of perturbation. In Lo-SVM-MFN, the
candidate solution w®) obtained after line search in iteration & is seeded for
the CGLS computation of w*. Also, in tuning A\ over a range of values, it
is computationally valuable to seed the solution for a particular A onto the
next value. For the semi-supervised SVM implementations with Lo-SVM-
MFN, we will seed solutions across linear systems with slightly perturbed
label vectors, data matrices and costs.

2.2 Line Search

Given the vectors w,w in some iteration of Lo-SVM-MFN;, the line search
step requires us to solve:

0% = argmin ¢(d) = f (ws)
6>0

where ws = w + §(w — w).

The one-dimensional function ¢(0) is the restriction of the objective func-
tion f on the ray from w onto w. Hence, like f, ¢(d) is also a continuously
differentiable, strictly convex, piecewise quadratic function with a unique
minimizer §* given by ¢'(6*) = 0. Thus, one needs to find the root of the
piecewise linear function

¢(0) = dwf (0 —w)+ Y cidi(ws) (0 — 0;) (6)

i€g(ws)

where 0 = Xw,0 = Xw.

The linear pieces of ¢’ are defined over those intervals where j(ws) re-
mains constant. Thus, the break points occur at a certain set of values §;
where wéTixi = y; for some data point indexed by 4, i.e §; = ‘32332 = yzl(gf/fo’l)
Among these values, one needs to only consider those indices ¢ where §; > 0
i.eifi € y(w) (then y;0; < 1), so yi(0; —0;) > 0 or if i ¢ j(w) (then y;o; > 1),
s0 ¥;(0; —0;) < 0. When 0 is increased past a d;, in the former case the index
i leaves j(w) and in the latter case it enters j(w). Reordering the indices so
that ¢; are sorted in a non-decreasing order as d;,,0;j, ..., the root is then
easily checked in each interval (J;,,05,.,), & = 1,2... by keeping track of
the slope of the linear piece in that interval. The slope is constant for each
interval and non-decreasing as the search progresses through these ordered
intervals. The interval in which the slope becomes non-negative for the first
time brackets the root. Defining the extension of the linear piece in the
interval (6, ,dj,,,) as ¢} (6) = Awi (w0 —w) +Zi€j(w5j ) cidi(ws) (0 — 0;), the
slope and the root computations are conveniently doﬁne by keeping track of
L = ¢,(0) = Mw" (w0 — w) + Eiej(wsjk) ci(oi — yi)(0; — 0;) and R = ¢ (1) =
Mol (0 — w) + Eiey(w(;j ) €i(0i — i) (0; — 0;). The full line search routine is
outlined in Table 3. ’




Table 1 provides an abridged pseudo-code for Ly-SVM-MFN. See [15] for
numerous other details. Lo-SVM-MFN alternates between calls to CGLS
and line searches. Its computational complexity therefore is O(¢,, fnfcglsng)
where 1,7, is the number of outer iterations of CGLS calls and line search,
and t.g is the average number of CGLS iterations. These depend on the
data set and the tolerance desired in the stopping criterion, but are typically
very small®>. Therefore, the complexity is found to be effectively linear in
the number of entries in the data matrix.

3 Semi-supervised Linear SVMs

We now assume we have [ labeled examples {xi,yi}gzl and v unlabeled
examples {z)}¥_; with z;, 2} € R? and y; € {—1,+1}. Our goal is to
construct a linear classifier sign(w” z) that utilizes unlabeled data, typically
in situations where | < u. We present semi-supervised algorithms that

provide Lo-SVM-MFN the capability of dealing with unlabeled data.

3.1 Transductive SVM

Transductive SVM, originally proposed in [19], appends an additional term
in the SVM objective function whose role is to drive the classification hy-
perplane towards low data density regions. Variations of this idea have
appeared in the literature [10, 1, 9]. Since [10] appears to be the most nat-
ural extension of standard SVMs among these methods, and is popularly
used in Text classification applications, we will focus on developing its large
scale implementation.
The following optimization problem is setup for standard TSVMS:

w* = argmin lwl||* + max [0,1 —y; (w'z;)]
weRd {yfe{-1,+1}}4_, 2 lz

+2u2max 0,1 — ¢} (w”z)]
7=1

1 u
bject to: =) 0,sign(w’ z%)] =
subject to: max [0, sign(w x])] r
The labels on the unlabeled data, y] ...y, are {4+1, —1}-valued variables

in the optimization problem. In other words, TSVM seeks a hyperplane
w and a labeling of the unlabeled examples, so that the SVM objective

For example, [15] reports a text classification experiment involving 198788 examples
and 252472 features where t,, 5, = 11,%cg1s = 102.

5The bias term is typically excluded from the regularizer, but this factor is not expected
to make any significant difference.



function is minimized, subject to the constraint that a fraction r of the
unlabeled data be classified positive. SVM margin maximization in the
presence of unlabeled examples can be interpreted as an implementation of
the cluster assumption. In the optimization problem above, X' is a user-
provided parameter that provides control over the influence of unlabeled
data 7. If there is enough labeled data, A, \,r can be tuned by cross-
validation. An initial estimate of r can be made from the fraction of labeled
examples that belong to the positive class and subsequent fine tuning can
be done based on performance on a validation set.

This optimization is implemented in [10] by first using an inductive SVM
to label the unlabeled data and then iteratively switching labels and retrain-
ing SVMs to improve the objective function. The TSVM algorithm wraps
around an SVM training procedure. The original (and widely popular) im-
plementation of TSVM uses the SVM-Light software. There, the training
of SVMs in the inner loops of TSVM uses dual decomposition techniques.
As shown by experiments in [15], in sparse, linear settings one can obtain
significant speed improvements with Lo-SVM-MFN over SVM-Light. Thus,
by implementing TSVM with Lo-SVM-MFN, we expect similar improve-
ments for semi-supervised learning on large, sparse datasets. As we will see,
the Lo-SVM-MFN retraining steps in the inner loop of TSVM are typically
executed extremely fast by using seeding techniques. Additionally, we also
propose a version of TSVM where more than one pair of labels may be
switched in each iteration. These speed-enhancement details are discussed
in the following subsections.

3.1.1 Implementing TSVM Using Lo-SVM-MFN
To develop the TSVM implementation with Lo-SVM-MFN, we need to con-

sider the objective function corresponding to Eqn. 7 but with the Lo loss
function:

* 2

) A
wr = argmin =

l
1
leol* + 55 D" max 0,1 — yi (w'ay)]
weRd {y ]~ 111}, 2 20 =

p -
+ﬂ Z max [0, 1-— y; (UJT:JU;-)]2
7=1

1 u
bject to: =) 0,sign(w’ z%)] = 7
subject to u 2 max [0, sign(w ac])] r (7)

"Suppose, the data has distinct clusters with a large margin, but the cluster assumption
does not hold i.e the labeling given by the supervised classifier is actually the true labeling
even though it cuts the clusters. In such cases, A’ can be set to 0 and standard SVM is
retrieved. In general, A" needs to be tuned for each data set.

10



Figure 1: Ly Loss function over unlabeled examples for Transductive SVM
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Note that this objective function above can also be equivalently written
in terms of the following loss over each unlabeled example z:

min (max 0,1 — (wTac)]2 ,max [0,1 + (wa)]2) = max [0,1 — |wTac|]2

Here, we pick the value of the label variable y that minimizes the loss on
the unlabeled example z, and rewrite in terms of the absolute value of the
output of the classifier on . This loss function is shown in Fig. 1. We note in
passing that, L; and Ly loss terms over unlabeled examples are very similar
on the interval [—1,+1]. The non-convexity of this loss function implies
that the TSVM training procedure is susceptible to local optima issues. In
the next section, we will outline a mean field annealing procedure that can
overcome this problem.

The TSVM algorithm with Le-SVM-MFEN is outlined in Table 4 and
closely follows the presentation in [10]®. A classifier is obtained by first
running Ls-SVM-MFN on just the labeled examples. Temporary labels are
assigned to the unlabeled data by thresholding the soft outputs of this clas-
sifier so that the fraction of the total number of unlabeled examples that
are temporarily labeled positive equals the parameter r.

Then starting from a small value of X', the unlabeled data is gradually
brought in by increasing A\’ by a factor of 2 in the outer loop. This gradual
increase of the influence of the unlabeled data is a way to protect TSVM
from being immediately trapped in a local minimum. An inner loop identifies
pairs of unlabeled examples with positive and a negative temporary labels
such that switching these labels would decrease the objective function. Lo-
SVM-MEFN is then retrained with the switched labels.

8 A minor difference is that in our implementation, we did not use separate cost factors
for balancing loss terms for the positive and negative class

11



3.1.2 Multiple Switching

The TSVM algorithm presented in [10] involves switching a single pair of
labels. We propose a variant where upto S pairs are switched such that the
objective function improves. Here, S is a user controlled parameter. Setting
S = 1 recovers the original TSVM algorithm, whereas setting S = u/2
switches as many pairs as possible in the inner loop (Loop 2 in Table 4) of
TSVM. The implementation is conveniently done as follows:

1. Identify unlabeled examples with active indices and currently positive
labels. Sort corresponding outputs in ascending order. Let the sorted
list be LT.

2. Identify unlabeled examples with active indices and currently negative
labels. Sort corresponding outputs in descending order. Let the sorted
list be L~.

3. Pick pairs of elements, one from each list, from the top of these lists
until either a pair is found such that the output from L™ is greater
than the output from L, or if S pairs have been picked.

4. Switch the current labels of these pairs.

Using arguments similar to Theorem 2 in [10] we can show that Transduc-
tive Lo-SVM-MFN with multiple-pair switching converges in a finite number
of steps.

Proposition: Transductive Le-SVM-MFN with multiple-pair switching
converges in finite number of steps.

Proof: The outer loop (marked Loop 1 in Table 4) clearly terminates
in finite number of steps. Each call to La-SVM-MFN terminates in finite
number of iterations due to Theorem 1 in [15]. We only need to show
that Loop 2 also has finite termination. Let J(w,Y”’) be the value of the
TSVM objective function for some candidate weight vector w and candidate
label vector Y' = [y] ...y,] over the unlabeled data. Let w(Y”),Y’ be the
operating variables at the end of an iteration of loop 2 where w(Y') =
argmin, cra J(w,Y'). After switching labels, let the new operating label
vector be Y. It is easy to see that:

J(w(Y"),Y") > J(w"),Y") > J(w(Y"),Y")

The second inequality follows since w(Y") minimizes J(w,Y") over all w.
To see the first inequality observe that for any pair of data points (say with
indices 7, j) whose labels are switched, the following conditions are satisfied:

v = Ly = —Lw¥") Tz} < 1,-w¥") s < Lw¥") "z} < wy) 'z,

12



The terms contributed by this pair to the objective function decrease after
switching labels since the switching conditions imply the following:

max[0, 1 — w’ z!]? + max[0, 1 + wa9]2 =(1—wlah)? +(1+ wag)2

> (1 +wlah)?+ (1 - wTa:;-)2 > max[0,1 4+ w! 2% + max[0,1 — ngc;-]2

Thus, swapping the labels of multiple pairs that satisfy the switching con-
ditions reduces the objective function.

Since at the end of consecutive iterations J(w(Y'),Y") > J(w(Y"),Y"),
Loop 2 must terminate in finite number of steps because there are only a
finite number of possible label vectors. O

We are unaware of any prior work that suggests and evaluates this simple
heuristic of switching more than one label. Our experimental results in
section 4 establish that this heuristic is very effective in speeding up TSVM
training while maintaining generalization performance on textual problems.

3.1.3 Seeding

The effectiveness of Lo-SVM-MFEN on large sparse datasets combined with
the efficiency gained from seeding w in the re-training steps (after switching
labels or after increasing A’) make this algorithm quite attractive. Consider
an iteration in Loop 2 of TSVM where a new pair of labels has been switched,
and the solution w from the last retraining of Lo-SVM-MFN (marked as Re-
training 2 in Table 4) is available for seeding. According to Theorem 1 in
[15], when the last Lo-SVM-MFEN converged, its solution w is given by the

linear system?:

A+ X?(w)cl(w)XI(w)] w = XIT(w)CI(w)Y

where Y is the current label vector. When labels Y;, Y; are switched, back
at the top of loop 2, the label vector is updated as:

Y:Y—I—Zeij

where e;; is a vector whose elements zero everywhere except in the ith and
the j** position which are +1 and -1 or -1 and +1 respectively. Note also
that if 7,7 € j(w) the re-training of Lo-SVM-MFN with w as the starting
guess immediately encounters a call CGLS to solve the following perturbed
system:

T ~ T
|:>\I + X](w)C](w)X](w) w = X](w) C](w) [Y + 26@']

9The subsequent line search does not change this w; therefore, the optimality conditions
are checked immediately after the CGLS step

13



The starting residual vector r¥ is given by:

0 = XDy [Y +2e5] - [AI + X1 Oy Xy | w

= r(w)+ QXJT(w)CJ(w)eij
< et 2N |la — x|

where r(w) in the second step is the final residual of w which fell below € at
the convergence of the last re-training. In applications like Text categoriza-
tion, TFIDF feature vectors are often length normalized and have positive
entries. Therefore, ||z; — z;|| < v/2. This gives the following bound on the
starting residual:

0 < e+ 2v2N

which is much smaller than a bound of ny/n\ with a zero starting vector.
Seeding is quite effective for Loop 1 as well, where )\’ is changed, as demon-
strated by experiments in [15]. With the two additional loops, the complex-
ity of Transductive Lo-TSVM-MFN becomes O(ngwitchestm fntcgisho), where
Tswitches 1S the number of label switches. The outer loop executes a fixed
number of times; the inner loop calls Lo-TSVM-MFN 1 g tches times. Typ-
ically, ngywitches 18 €xpected to strongly depend on the data set and also on
the number of labeled examples. Since it is difficult to apriori estimate the
number of switches, this is an issue that is best understood from empirical
observations.

3.2 Mean Field Annealing

The transductive SVM loss function over the unlabeled examples can be seen
from Fig. 1 to be non-convex. This makes the TSVM optimization procedure
susceptible to local minimum issues causing a loss in its performance in many
situations, e.g as recorded in [6]. We now present a new algorithm based on
mean field annealing that can potentially overcome this problem while also
being computationally very attractive for large scale applications.

Mean Field Annealing [14, 3, 4] (MFA) is an established tool for combina-
torial optimization that approaches the problem from information theoretic
principles. The discrete variables in the optimization problem are relaxed to
continuous probability variables and a non-negative temperature parameter
T is used to track the global optimum.

We begin by re-writing the TSVM objective function as follows:

l
1
w* = argmin é||w||2 + — Zmax 0,1 -y, (ngci)]2
weR? {p;€{0,1}}¥_, 2 2l i—1
NS (o 0,1 — (wla)]* + (1 — 0,1 + (wz")]?
—i-%]z::l ujmax[ 1= (w xj)] + ( —,u])max[ 1+ (w xj)]
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Here, we introduce binary valued variables p; = (1 + y;)/2. Let p; € [0,1]
denote the belief probability that the unlabeled example x; belongs to the
positive class. The Ising model ' of Mean field annealing motivates the
following objective function, where we relax the binary variables p; to prob-
ability variables p;, and include entropy terms for the distributions defined

by p;:

l
. A 1 2
wh = argmin 5““’“2 + 3 Zmax 0,1 —y; (w'z;)]
weR? {p;e[0 1]}¥_, i=1
)\, “ T 1 2 T._1 2
+% (pj max [0,1 — (w xj)] + (1 — pj) max [O, 1+ (w xj)] )
j=1

+% Z (pj log pj + (1 —pj) log (1 —Pj)) (8)
j=1

Here, the “temperature” T parameterizes a family of objective functions.
The objective function for a fixed 7' is minimized under the following class

balancing constraints:
1 u
~Yopi=r (9)
U 4
J=1

where r is the fraction of the number of unlabeled examples belonging to
the positive class. As in TSVM, r is treated as a user-provided parameter.
It may also be estimated from the labeled examples.

The solution to the optimization problem above is tracked as the tem-
perature parameter 7' is lowered to 0. The final solution is given as:

* : *

w* = %11)1}) W (10)
In practice we monitor the value of the objective function in the optimization
path and return the solution corresponding to the minimum value achieved.
To develop an intuition for the working on this method, we consider the
loss term in the objective function associated with an unlabeled example
as a function of the output of the classifier. This loss term is based on
calculations to be described below. Fig. 2 plots this loss term for various
values of T'. As the temperature is decreased, the loss function deforms
from a squared-loss shape where a global optimum is easier to achieve, to
the TSVM loss function in Fig. 1. At high temperatures a global optimum
is easier to obtain. The global minimizer is then slowly tracked as the

temperature is lowered towards zero.

Y0A multiclass extension would use the Potts glass model. There, one would have to
append the entropy of the distribution over multiple classes to a multi-class objective
function.
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Figure 2: Ly Loss function over unlabeled examples for Transductive SVM

ul Decreasing Temperature

IAN

The optimization is done in stages, starting with high values of 7" and
then gradually decreasing 1" towards 0. For each 7', the problem in Eqns.
8,9 is optimized by alternating the minimization over w and p = [p1...py]
respectively. Fixing p, the optimization over w is done by Lo-SVM-MFN.
Fixing w, the optimization over p can also be done easily as described below.
Both these problems involve convex optimization and can be done exactly
and efficiently. We now provide the details of these optimization steps.

3.2.1 Optimizing w

We describe the steps to efficiently implement the Lo-SVM-MFN loop for
optimizing w keeping p fixed. The call to Lo-SVM-MFN is made on the data
X = (X" X" X ’T]T whose first [ rows are formed by the labeled examples,
and the next 2u rows are formed by the unlabeled examples appearing as

two repeated blocks. The associated label vector and cost matrix are given
by

R u u
Y = [yl,y2...yl, 1, 1, ...1, —1, —1...—1
l u U
,—/\ - A\ ™~ A\ ~N

Even though each unlabeled data contributes two terms to the objective
function, effectively only one term contributes to the complexity. This is
because matrix-vector products, which form the dominant expense in Lo-
SVM-MFN, are performed only on unique rows of a matrix. The output
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may be duplicated for duplicate rows. Infact, we can re-write the CGLS
calls in Lo-SVM-MFN so that the unlabeled examples appear only once in
the data matrix. Consider the CGLS call at some iteration where the active
index set is 7 = j(w) for some current candidate weight vector w:

M+ XT0 Xy w=X"Cyy, (12)

Note that if |wa;| > 1, the unlabeled example z); appears as one row
in the data matrix X, with label given by —sign(wa;-). If |wa;-| < 1, the
unlabeled example x; appears as two identical rows X , with both labels. Let
71 € 1...1 be the indices of the labeled examples in the active set, /; € 1...u
be the indices of unlabeled examples with |w”z/| > 1 and 5 € 1...u be the
indices of unlabeled examples with |wa;-| < 1. Note that the index of every
unlabeled example appears in one of these sets i.e, 74 Ujs, =1...u. Eqn. 12
may be re-written as:

)\I—i-Tinxi-l—EZij;- xj—i-;Zx;- zj| w=

Ve J€Nn J€S
1 b . Y
7 Zylxz ~ Z cjsign(w” xj)x; + w Z(ij - 1)z;
€n jenh JET
where ¢; = p; if sign(wa;-) = —land ¢; =1—pjif sign(wa;-) = 1. Re-

writing in matrix notation, we obtain an equivalent linear system that can

be solved by CGLS:
M+ XTCX| w = XTCY (13)

where X = [X Tl X'], C is a diagonal matrix and Y is the vector of effectively
active labels. These are defined by:

. 1 - ,
Cis=7,Yi=yi Jjel..lnl
ooy = P4 P 1 el i € 4., sign(w’e)) = -1
GHahGHah = = Yo =1 7€ 1w, j € gy, sign(w” ) =
. N(1l-pj) = e ) .
Clittnbtiah = = Vg = -1 i jel..u jeg, sign(w’a)) =1
!
Cltlah G+ = 5 » Yirlnl = @pj 1) i j€1..ou je g (14)

Thus, CGLS needs to only operate on data matrices with one instance
of each unlabeled example using a suitably modified cost matrix and label
vector.
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After the CGLS step, one needs to check the optimality conditions. The
optimality conditions can be re-written as:

Vien yioi<l+e
Viey yioi>1l-—e
Vien |0j>1-¢
Vies |oj<1+e

For the subsequent line search step, we reassemble appropriate output and
label vectors to call the routine in Table 3. The steps for optmizing w are
outlined in Table 7.

3.2.2 Optimizing p

For the latter problem of optimizing p for a fixed w, we construct the La-
grangian:

! u
2 2
L = o (pj max [0,1 — (wa;)] + (1 — pj) max [0,1 + (wTac"j)] )
j=1
T « 1 —
+@Z(Pj log p;j + (1 —pj;) log (1 —p;)) —v ;ZPJ -
7=1 7j=1

Differentiating the Lagrangian with respect to p;, we get:

oL N T,1\12 T,7\12 T Pj v
o =5 (max 0,1 = (w'2%)]” — max [0,1 + (w' z})] )—l—%log —p u =0
Define:

g; =X\ (max (0,1 - (u)Tac;)]2 — max [0,1 + (wag)]2)

Then, the expression for p; is given by:

1

Pj=—F=w (15)
=

Substituting this expressing in the balance constraint in Eqn. 9, we get a
one-dimensional non-linear equation in 2v:

u

j—11l+e T

The value of 2v is computed exactly by using a hybrid combination of
Newton-Raphson iterations and the bisection method to find the root of
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the function B(v) = < Eii?ﬂ +J__,, — 7. This method is rapid due to the

T
quadratic convergence propertigsr?)f Newton-Raphson iterations and fail-safe
due to bisection steps. Note that the root exists and is unique, since one
can see that B(v) - 1 —r > 0 when v — oo, B(v) - —r < 0 when
v — —oo, and B(v) is a continuous, monotonically increasing function (see
Fig.3). The root finding begins by bracketing the root in the interval [v_, vy ]

so that B(rv_) < 0, B(v4+) > 0 where v_, v, are given by:
1-r

v_ =min(g; ...gy) — T log
1—r

vy =max(gy...gy) — T log

The hybrid root finding algorithm performs Newton-Raphspon iterations
with a starting guess of % *+ """+ and invokes the bisection method whenever
an iterate goes outside the brackets. The steps for optimizing p are outlined
in Table 6.

Figure 3: The value of B(v) = Ei+?+1 ? — r as a function of v.
I4e T

Here, T = 1,7 = 0.15,¢; € [—5,5]. The root is marked on the plot.
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3.2.3 Stopping Criteria

For a fixed T, this alternate minimization proceeds until some stopping crite-
rion is satisfied. A natural criterion is the mean Kullback-Liebler divergence
(relative entropy)'! K L(p,q) between current values of p; and the values,
say ¢;, at the end of last iteration. Thus the stopping criterion for fixed T

1 Other distance measures e.g euclidean distance may also be used instead.
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is:

u
Pj 1-p
KL(p,q) =Y _p; log q—",+(1—pj) log T——* < ue (16)
J

qj

j=1
A good value for € is 107%. The temperature may be decreased in the outer

loop until the total entropy falls below a threshold, which we take to be

e = 1075 as above.
u

H(p) ==Y (p; log p; + (1 —p;) log (1 —p;)) < ue (17)
j=l

Note that we set upper limits on the total number of iterations in both
loops. Often the entropy may converge to a value larger than the stopping
threshold and the outer loop is exited by exeeding the maximum iterations
allowed. In such cases, due to seeding, the extra iterations add insignificant

cost.
The TSVM objective function is monitored as the optimization proceeds.

[
A 2, 1 T 2
J(w) = §HwH + 2 i_zlmax [0, 1—y (w xz)]
) u 9
T
+%Zlmax (0,1 — w”zl] (18)
‘]:

The weight vector corresponding to the minimum transductive cost in the
optimization path is returned as the solution.

The steps of mean field annealing with Lo-SVM-MFEN are outlined in
Table 5.

4 Empirical Study

Semi-supervised learning experiments were conducted to test these algo-
rithms on six text binary classification problems. These are listed in Table 8.

Table 8: Two-class datasets used in the experiments : d is the data dimen-
sionality, ng is the average number of non-zero entries per example vector,
I + w is the number of labeled and unlabeled examples, ¢ is the number of
test examples.

Dataset d T I+ u t
auto-vs-aviation | 20707 | 51.32 | 35588 | 35587
real-vs-simulated | 20958 | 51.32 | 36155 | 36154

ccat 47236 | 75.93 | 17332 | 5787
gcat 47236 | 75.93 | 17332 | 5787

33-vs-36 09072 | 26.56 | 41346 | 41346
pcmac 7511 | 54.58 | 1460 486
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The auto-vs-aviation and real-vs-simulated binary classification datasets
come from a collection of UseNet articles '? from four discussion groups, for
simulated auto racing, simulated aviation, real autos, and real aviation!3.
The ccat and gcat data sets pose the problem of separating corporate and
governement related articles respectively; these are the top-level categories
in the RCV1 training data set [11]. These data sets create an interesting
situation where semi-supervised learning is required to learn different low
density separators respecting different classification tasks in the same input
space. The 33-vs-36 data set is a subset of a multiclass Yahoo shopping
data set. Finally, the pcmac data set is a small subset of the 20-newsgroups
data popularly used in semi-supervised learning literature (e.g in [6, 16]).
The results below are averaged over 10 random!# splits of training (labeled
and unlabeled) and test sets. The amount of labeled data in the training
set was gradually varied to generate learning curves. We use a default value
of X' =1 for all datasets except'® for auto-vs-aviation and ccat where
A = 10. The default value of A = 0.001 was used for all datasets.

Minimization of Objective Function

We first examine the effectiveness of TSVM and MFA in optimizing the
TSVM objective function. In Figure 4, we plot the minimum value of the
objective function achieved by TSVM and MFA with respect to varying
number of labels. As compared to TSVM, we see that MFA performs sig-
nificantly better optimization on auto-vs-aviation, ccat, and pcmac datasets
and slightly better optimization on the other datasets.

Transduction Learning Curves

In Figures 5, 6, 7 we plot error rates over unlabeled examples for SVM,
TSVM and MFA with respect to varying amounts of labeled data.
The following observations can be made:

1. Comparing the learning curves for SVM against the semi-supervised
algorithms, the benefit of unlabeled data is evident on all datasets,
and is particularly striking on auto-vs-aviation, real-vs-simulated, gcat,
and pcmac.

2. On auto-vs-aviation and pcmac , MFA outperforms TSVM signif-
icantly. On ccat, MFA performs a much better optimization but
this only translates into slight error rate improvements. MFA and

2available at http://www.cs.umass.edu/~mccallum/data/sraa.tar.gz

1*We used the RAINBOW software [13] to generate feature vectors after removing
words that only appear in 10 or fewer documents.

14The class ratios are maintained in these splits.

15This produced better results for both TSVM and MFA. A careful optimization of A’
was not attempted.
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Figure 4: Minimum value of objective function achieved by MFA and Trans-
ductive Ly-SVM-MFN with respect to number of labels.
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TSVM are very closely matched on gcat and 33-vs-36 . On real-vs-
simulated dataset, TSVM and MFA perform very similar optimization
of the transduction objective function (see Figure 4), but appear to
return very different solutions. The TSVM solution returns lower error
rates as compared to MFA on this dataset.

3. For TSVM, on all datasets we found that multiple switching returned
nearly identical performance as single switching. Since it saves signif-
icant computation time, our study establishes multiple switching as a
valuable heuristic for applications of TSVM.

Out-of-Sample Learning Curves

In Figures 8, 9, 10 we plot error rates over unseen test examples for SVM,
TSVM and MFA with respect to varying amounts of labeled data. Com-
paring with learning curves for transduction, we see the observations in the
previous section are also true for out-of-sample performance. Both TSVM
and MFA provide high quality extension to unseen test data.
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Figure 5: Transduction error rate with respect to number of labels
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Computational Timings

In Figure 11, we plot the average computation time for MFA and TSVM
with 1, 10, 100 and maximum switching. The following observations can be
made:

1. The standard single switch TSVM is an order of magnitude slower
than the multiple switching variant.

2. MFA takes a moderate amount of time. It is significantly faster than
single switch TSVM and typically slower than TSVM with maximum
switching.

3. The TSVM computation time is more strongly dependent on the num-
ber of labels than MFA.

Comparison with SVM'eht

In Table 9, we compare our implementations with SVM8! at its default
optimization settings on the first split at the lowest end of the learning
curves. These comparisons demonstrate massive speedups with our methods
over the dual techniques used in SVM'8ht,

Note that the results presented in this section were obtained with a
MATLAB implementation with a C' interface to the core CGLS routine. In
our experiments, the computational difference between single and multiple
switching may have been somewhat exaggerated due to implementation in
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Figure 6: Transduction error rate with respect to number of labels
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MATLAB (since single switching involves more non-vectorized loops which
are not optimized in MATLAB). We expect significantly faster computation
times with a full C or a fortran implementation, especially with parallel
computation of matrix vector products.

Table 9: Speed (in seconds) and error rate comparisons with SVM!sht, §—1
and S=max denote single and multiple-switching implementations of TSVM
with the modified finite newton procedure.

Dataset svMisht | S—1 [ S=max | MFA
auto-vs-aviation time 101759 5849 390 1446
error rate | 0.0664 | 0.0576 | 0.0575 | 0.0595
real-vs-simulated time 498313 6244 373 1129
error rate | 0.1589 | 0.1430 | 0.1426 | 0.1460

ccat time 13540 2352 390 1185
error rate | 0.4071 0.2098 | 0.2081 | 0.1861

gcat time 243840 1267 358 159
error rate | 0.0665 | 0.0646 | 0.0639 | 0.0591

33-vs-36 time 48390 7406 309 393
error rate 0.2290 0.2140 | 0.2136 | 0.2206

pcmac time 167 4 2 12

error rate | 0.0597 | 0.0782 | 0.0802 | 0.0556
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Figure 7: Transduction error rate with respect to number of labels
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Importance of Annealing

To confirm the necessity of an annealing component (tracking the minimizer
with respect to 7T") in the optimization, we compare MFA with the alternating
w,p optimization procedure where the temperature parameter is held fixed
at T =1and T = 0.1. In Figure 12 we plot the minimum value of the
objective function achieved with and without annealing. The corresponding
learning curves are plotted in Figure 13. We see that annealing provides
higher quality solutions as compared to fixed temperature optimization.

It is important to note that the gradual increase of A to the user-set
value in TSVM is also a mechanism to avoid local optima. The non-convex
part of the objective function is gradually increased to a desired value. In
this sense, \' simultaneously plays the role of an annealing parameter and
also controls the strength of the cluster assumption. This dual role has the
advantage that a suitable A\’ can be chosen by monitoring performance on
a validation set as the algorithm proceeds. In MFA, however, we directly
use an established framework for global optimization of a non-convex objec-
tive function, decoupling annealing from the implementation of the cluster
assumption. As our experiments show, this can lead to significantly better
solutions on many problems.
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Test error rate

Figure 8: Test error rate with respect to number of labels
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Figure 9: Test error rate with respect to number of labels
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Figure 10: Test error rate with respect to number of labels
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Figure 11: Computation time with respect to number of labels for MFA and
Transductive Lo-SVM-MFN with single and multiple switches.
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Figure 12: Minimum value of objective function achieved by MFA and a
fixed temperature optimization with respect to number of labels.
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Figure 13: Error Rates achieved by MFA and a fixed temperature optimiza-
tion with respect to number of labels.
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5 Extensions and Applications

In this section, we collect our thoughts on various extensions and applica-
tions of the methods proposed in this paper, and outline some directions for
future work.

Non-linear Mean Field Annealing

In many problems of interest one needs to construct complex, non-linear
classification boundaries. The MFA algorithm can be extended to oper-
ate in a non-linear Reproducing Kernel Hilbert Space (RKHS) of functions
‘Hx defined by a kernel function K. Specifically, we solve an optimization
problem of the following kind:

l
. A 1
f;“: argimin §||f||%(+jz yuxz,f
feHk {pjel0 1}, -1

N —
=1

u

T 1 —
l log pi+ (1 —p;) log (1 —p; bject to: — =
+uj§1 (pj log pj + (1 —p;) log (1 —pj)) subject to » Eﬁ pj=r

Here, V (y,z, f) is a loss function and ||f||x is the norm of f in the RKHS
Hr. Annealing is performed by taking the limit f* = limz_o f7.
By the representer theorem, the solution to the above problem, for fixed
p, is given as:
I+u

E o; K (x, ;)

where the expansion coefficients «; depend on both 7" and p. Non-linear
MFA can be easily implemented for a variety of loss functions. For example,
if the loss function V is continously differentiable, one can use a non-linear
version of the modified finite newton procedure to optimize the [ + u primal
variables a.. Alternatively, for the hinge loss V(y,z, f) = max [0,1 — yf(z)],
one can use a standard implementation of sequential minimal optimization
(SMO). This optimization is then alternated with optimization of p given
by a derivation similar to that in section 3.2.2. In an outer loop, the tem-
perature is gradually reduced.

An interesting family of hybrid algorithms can be developed that run
non-linear MFA with a class of kernels [16] that are adapted for semi-
supervised learning, based on geometric structures of the data estimated
using a data-adjacency graph. The benefits of a hybrid approach that com-
bines graph-based semi-supervised learning with TSVM-style optimization
has been noted in [6]. The former techniques provide data representations
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and complexity notions that are better suited for semi-supervised learning,
and the latter techniques complement these with explicit optimization over
the unknown labels.

One-Class Problems, Clustering and Fully Supervised Learn-
ing

TSVM and MFA can be deployed in a variety of settings involving different
amounts of labeled and unlabeled data. Many real world settings present
the task of identifying members of a certain class as opposed to distinguish-
ing between well-specified classes. For example, in order to identify web
documents concerning sports, it is much easier to label sports documents
than to label the diverse and ill-characterized set of non-sports documents.
In such problems, labeled examples come from a single class, very often with
large amounts of unlabeled data containing some instances of the class of
interest and many instances of the “others” class.

Being a special case of semi-supervised learning, the problem of one-class
learning with unlabeled data can be addressed by the algorithms developed
in this paper. Recall that these algorithms implement the cluster assumption
under constraints on class ratios. For one-class problems, unlabeled data
is expected to be helpful in biasing the classification hyperplane to pass
through a low density region keeping clusters of the relevant class on one
side and instances of the “others” class on the other side.

A novel class of linear clustering algorithms may arise by adapting our
algorithms for the extreme case where no labels are available. At the other
extreme of fully supervised learning, one may utilize MFA ideas for opti-
mizing non-convex loss functions closer to the missclassification (zero-one)
loss (as compared to e.g the hinge loss), yielding algorithms with possi-
bly superior generalization performance and better sparsity properties. See
[7] for some recent work on regularization algorithms with non-convex loss
functions.
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Table 1: Ly-SVM-MFN

Problem

Define

Given [ labeled examples {z;,y;}._, where z; € R?,y; € {~1,+1} and a
cost for each example {c;}._,, Solve:

!
1 2 A
* . - i 0.1—wy; T,.. _ 2
w* = azgergclln 5 ;:1 cimax [0,1 —y; (w' ;)] + 2||w||

X=[zy...o)]T e R*¥ YV =[y;...¢9]" € R*!
C € R 4 diagonal matrix with Cj; = ¢;
w € R?:  (a guess for the solution)

If a guess is available, it is also convenient to pass:
o=Xw g={i:ry0; <1} °={i:iey}

Inputs

Initialize

Iterate

Outputs

X,Y,C, )\ and w,o0,, ¢ (if available)

if w, 0 unavailable (or set as zero vectors) set w =0 € R4, 0 =0 €
R, € =1072, cgitermax =10, y=1...1, *=¢
if w, 0,7, 5¢ are available, set € = 1075, cgitermax = 10000

7=10"% iter=0 itermax = 50

while (iter < itermax)
iter=iter+1

(@, 0,,0pt) = CGLS(X,,Y),,C),w,0,,€,cgitermax) (see table 2)
0 = Xyew
If cgitermax=10 reset cgitermax = 10000
if (opt=LViey yio,<l+71 , Vi€ yo,>1—-1)
If e = 1072 reset e = 10% and
continue the while loop iterations.
Else set w = w 0=0
and exit the while loop.
end if

0 = LINE-SEARCH (w,w, 0,0,Y,C) (see table 3)
w=w+d(w—w)
o=0+4d(0— o)

g={iel...liyioy <1} s°={iel...l:i¢y}

end while

c
w,0,7,7
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Table 2: CGLS

Problem Given [ labeled examples {z;,y;}._, where z; € R, y; € {-1,+1}
and a cost for each example {c;}._,, Solve:
)\
B* = argmin ¢ |yi BT:C, 118117
i Z + 5181
Equivalently Solve: [AI + XTCX] p*=X"'Ccy
Define X=[z;...0)]T eR>¥ YV =[y...y)" € R*!
C € R : 4 diagonal matrix with Cj; = ¢
B € RY:  a guess for the solution (set =0 € R? if unavailable)
o=Xp
Inputs X, Y, C A\ B,o,¢,cgitermax
Initialization | z=C(Y —0) r=XT2-X8 p=7r w=|r|?
cgiter =0 optimality = 0
Iterate while (cgiter < cgitermax)
cgiter=cgiter 4 1
q=Xp
_ w1
7= NplP+4"Cq
B=pB+p
o=0+"7q
z=2z—7vCq
w9 = Wq
r=XTz—- B
wy = ||r|?
if (w < €2||2]|?)
Set optimality = 1 and Exit while loop.
end if
w= Z—;
p=r+wp
end while
Outputs B, 0, optimality
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Table 3: LINE-SEARCH

Inputs

Initialize

Iterate

Output

w,w,0,0,Y,C as defined in Table 1

g ={i:yj0; <1}

L= )\’wT(’lZJ — w) + Ez’e; Cz'z'(oi — yi)(éi — Oi)

R = )\’lZJT(’lZJ —w) + Zie; Cyi(0; — yi)(0; — 0;)

Define §; = % for all 4

Ay ={d:i€y, yi(0; —o0;) >0}

Ap ={0;:i ¢y, yi(o; —o0i) <0}

A=A1UA,

j=0

Reorder indices so that J; € A are sorted in non-decreasing
order 5i1 s 5i2 ceee

for j =1,2...
' =L+4§;,(R—L)

if (0" > 0)
Ezxit for loop
end if

Set s = —1if6;; € Ajor s =11if §;; € Ay
L=1L+ SCijij (Oij - yZ])((_)lJ - Oij)
R=R+ SCZ'].Z']. (6i]- — yij)(éij — Oz']-)

end for
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Table 4: Algorithm: Transductive Lo-SVM-MFN  Solves Eqn. 7

Problem Given [ labeled examples {z;,y;}._, where z; € R?,y; € {—1,+1} and
u unlabeled examples {z;'}¥_,, Solve problem in Eqn. 7.

Define X=[z1...qq)F eR*" YV =[y;...9]" € R*!
X' =[z}...o)) e R*u
o=Xw o=Xw

Inputs X, Y, X', N
r, S (maximum number of label pairs to switch, default S=1)

Initialization C € R*¥: a diagonal matrix with Cj; = %

R=2

wp= L9-SVM-MFN(X,Y, C)

Compute o = X'wgy. Assign positive and negative labels to the
unlabeled data in the ratio r : (1 — r) respectively by thresholding o'.
Put these labels in a vector Y.

Set M = 107> Define: Xz(?é) f’z(?j,)
Define ¢ € RUFwx(+u) ;4 diagonal matrix with:

. 1<i<l) Cui=% (1+1<i<l+u)

0eR? 0=0cR o cR* j=1...(I4+u) 1*=¢

Iterate (Loop 1) | while X' < X’

Re-training 1 (w, [0 0'],7,5°)= Ly-SVM-MFN (X, Y, C, w, [0 0], 7, 1)
Iterate (Loop 2) while (3 s index pairs (ig, ji)j_; : 1 < ig,jr <u with s < S
such that: Y; = +1, Y, = -1, 0} <1, -0} <1, 0;, <0})
Switch Labels Yl’k =-1 Y]’k =41 fork=1,2...5s
~ Y
(v
Re-training 2 (w, [0 0], 7,7%)= Lo-SVM-MFN (X, Y, C, w, [0 0], 3, )
end while (loop 2)
Increase X' XN = RN

Ci=1% (1<i<l) Ci=2% (+1<i<i+u)
end while (loop 1)

Output w
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Table 5:  Algorithm: Mean Field Annealing Ls-SVM-MFN. Solves

Eqn. 10,8,9
Problem Given [ labeled examples {x;,y;}\_, where z; € R?,y; € {—1,+1} and
u unlabeled examples {z’}}_,, Solve for w* in Eqns 10,8,9.
Define X=[z1...0;) eR>*" YV =[y...y)F e R*?
X' =[z}...2!]" e R
Inputs X, Y, X', \, N, r
Initialization | 7=10 R=15 e=10"°
iterl=0 itermaxl =30 itermax = 100
X — [XT X/T]T
p=[r...r]" €R"
h=H(p) (Eqn. 16)
(w,[o ], 21,71,92) = OPTIMIZE-W(X,Y,p, A, \') (Table 7)
F=Jw) (Eqn.18)
Foin=F wppn=w O;nin =0
Loop 1 while (iterl < itermax1l) AND (h > €)
iterl = iterl +1 iter2 =0
kl=1
Loop 2 while (iter2 < itermax2) AND (kl > ¢)
iter2 = iter2 +1
q=p
p = opTIMIZE-P(0', ', T,r) (Table 6)
(w,[o o], 31,01, 92) =
OPTIMIZE-W(X, Y, p, \, X, w, [0 0'], 71,71, 72) (Table 7)
kl=KL(p,q) (Eqn.16)
F =J(w) (Eqn. 18)
if F' < Fuin
Foin=F wWmin =w O;nin =0
end if
end while (loop 2)
h = H(p)
T=T/R
end while (loop 1)
Output Winin
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Table 6: OPTIMIZE-P Subroutine for mean field annealing to optimizing p.

See Table 5
Inputs o N, T,r
Compute g = [g7 - . - gu]
2 2
where g; = X' <ma,x [0, 1-— 03-} — max [0, 1+ 03-} )
Initialize e=10"1 iter =0 maxiter = 500
v =min(g; ...gu) — Tlog 1L
vy =max(g; ...gy) — T log :=°
v=(vy+v_)/2 Initial guess
_(g1—v) _(gu=v)
s=[e T ...... ]
Bv) =4 >i l—l}si -r
B'(v) = 7=, (1+s—;l)2 (if s; — oo, i.e larger than some upper
limit, set corresponding term to 0)
Iterate while (|B(v)| > €) AND (iter < maxiter)
iter=iter+1
if |IB'(v)] >0
L B(v)
AT
end if
if (?<v_-) OR (?>vy) OR B'(v)=0
Bisection v ="t
else
Newton-Raphson v="1v
end if
_(g1=v) _(gu—v)
Update s=[e T ...... e ]
_ 1 1
Bv) =y D ic Trs; 7
B'(v) = 2= 3", (HS—;)Z (if s; = o0, i.e larger than some
upper limit, set corresponding term to 0)
if Br) <Oset v_ =velsevy =v
if |vy — v_| < € exit while loop
end while
Output =[]
p p 1+s1 145y
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Table 7: OPTIMIZE-W (specialized Lo-SVM-MFN routine for mean field an-
nealing. See Table 5

Inputs

Initialize

Iterate

Output

X,Y,p,\,\ and w, [0 0'], 51, 71, 72 (if available)

if w unavailable (or set as zero vectors) set w = 0 € R?, [0 0]
0 € R, ¢ = 1072, cgitermax = 10, 3 = 1...1, 7
L...u, p=y97=2¢

if w,[o 0'],7,71,72 are available, set ¢ = 105 cgitermax
10000, s§ ={i€l...l:i¢y}

7=10"% iter =0 itermax = 50

Set Y, C according to Eqn. 11
Set Y, C according to Eqn. 14

while (iter < itermax)
iter=iter+1

4w
=141
(w, [0,, 0'],0pt) = CGLS (XJ,Y/J,CJ,w, [0, 6’],e,cgitermax)

OJIC = Xﬁw

Define the active index set: 7 = 7, U{s}

if cgitermax=10 reset cgitermax = 10000

ifopt=1, Viey yo, <1l+7, Viey yo, >1—r1
Vieq ojl>=1—-7 Vj€yg |oj|<1+7
If e = 1072 reset e = 10% and
continue the while loop iterations.
Else set w = w 0=0
and exit the while loop.
end if
5= LINE-SEARCH(w,w, 00 d],[6d ],7, 0)
w=w+d(w—w)
o=o0+d§0-—0) o =0d+40 —0)
g={i:yioi <1} gi={i:i ¢ n}
n={jel..uz|of| >=1} p={jel...u:|dj <1}
Recompute Y, C according to Eqn. 14
end while

w, [0 01]7]17]17]2
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