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tLarge s
ale learning is often realisti
 only in a semi-supervised set-ting where a small set of labeled examples is available together witha large 
olle
tion of unlabeled data. In many Information retrievaland data mining appli
ations, linear methods are strongly preferredbe
ause of their ease of implementation, interpretability and empiri-
al performan
e. In this work, we present a family of semi-supervisedlinear support ve
tor 
lassi�ers that are designed to handle partially-labeled sparse datasets with possibly very large number of examplesand features. At their 
ore, our algorithms employ modi�ed �niteNewton te
hniques re
ently developed in [15℄. Our 
ontributions inthis paper are as follows: (a) We provide an implementation of Lin-ear Transdu
tive SVM (TSVM) that is signi�
antly more eÆ
ient ands
alable than 
urrently used dual te
hniques, for linear 
lassi�
ationproblems involving large, sparse datasets. (b) We propose a variantof TSVM that involves multiple swit
hing of labels. Experimental re-sults show that this variant provides an order of magnitude furtherimprovement in training eÆ
ien
y. (
) We present a new algorithmfor semi-supervised learning based on a mean �eld annealing (MFA)approa
h. This algorithm alleviates the problem of lo
al minimum inthe TSVM optimization pro
edure while being 
omputationally attra
-tive. We 
ondu
t an empiri
al study on several do
ument 
lassi�
ationtasks that 
on�rms the value of these approa
hes in providing s
alabletools for semi-supervised learning in large s
ale settings. Finally, wealso note various extensions and appli
ations of our methods.
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1 Introdu
tionConsider the following situation: In a single web-
rawl, sear
h engines likeYahoo! and Google index billions of webpages. Only a very small fra
tion ofthese web-pages 
an possibly be hand-labeled by human editorial teams andassembled into topi
 dire
tories. The remaining web-pages form a massive
olle
tion of unlabeled do
uments. Ea
h do
ument is a sparse 
olle
tion ofwords and hyperlinks, highly stru
tured by grammati
al 
onstraints, in avery high dimensional linguisti
 spa
e. It is 
lear that the development of
omputational tools to organize large amounts of high-dimensional data withvery little human supervision is 
entral to the goal of e�e
tive informationmanagement in many appli
ations.Despite its natural and pervasive need, solutions to the problem of uti-lizing unlabeled data with labeled examples have only re
ently emerged inma
hine learning literature. Whereas the abundan
e of unlabeled data isfrequently a
knowledged as a motivation in most papers, the true potentialof semi-supervised learning in large s
ale settings is yet to be systemati
allyexplored. This appears to be partly due to the la
k of s
alable tools to han-dle large volumes of data, and partly due to the 
ommon resear
h pra
ti
eof demonstrating semi-supervised learning on small datasets with extremelyfew labels.Our motivation for this work is two-fold: (a) We seek to develop 
las-si�
ation algorithms for appli
ations involving large, possibly very high-dimensional but sparse, partially labeled datasets. Being the rule ratherthan the ex
eption, su
h datasets arise routinely in numerous appli
ationse.g in do
ument 
lassi�
ation, bioinformati
s and s
ienti�
 
omputing. (b)We seek to employ these te
hniques for studying semi-supervised learning inrealisti
 large s
ale settings. With these tools, one 
an investigate how thegeometri
 stru
ture of data in a high dimensional input spa
e intera
ts withthe distribution of labels and the hypothesis spa
e for learning on real-worldproblems.In this paper, we propose extensions of linear Support Ve
tor Ma
hine(SVM) for semi-supervised 
lassi�
ation. Linear te
hniques are often themethod of 
hoi
e in many appli
ations due to their simpli
ity and inter-pretability. When data appears in a ri
h high-dimensional representation,linear fun
tions often provide a suÆ
iently 
omplex hypothesis spa
e forlearning high-quality 
lassi�ers. This has been established e.g for do
ument
lassi�
ation with Linear SVMs in numerous studies (see e.g [5℄).Our methods are based on transdu
tive extensions of SVM �rst pro-posed in [19℄ and implemented with di�erent variations in [10, 1, 9, 6℄. Thekey idea is to bias the 
lassi�
ation hyperplane to pass through a low datadensity region keeping points in ea
h data 
luster on the same side of thehyperplane while respe
ting labels. This algorithm uses an extended SVMobje
tive fun
tion with a non-
onvex loss term over the unlabeled examples2



to implement the 
luster assumption in semi-supervised learning1. This ideais of histori
al importan
e as one of the �rst 
on
rete proposals for learn-ing from unlabeled data; its popular implementation in [10℄ is 
onsideredstate-of-the-art in text 
ategorization, even in the fa
e of in
reasing re
ent
ompetition.We highlight the 
ontributions of this paper.1. We outline an implementation for a variant of Transdu
tive SVM [10℄designed for linear semi-supervised 
lassi�
ation on large, sparse datasets.As 
ompared to 
urrently used dual te
hniques (e.g in the SVM-Lightimplementation of TSVM), our method exploits data sparsity and lin-earity of the problem to provide superior s
alability. Additionally, wepropose a multiple swit
hing heuristi
 that further improves TSVMtraining by an order of magnitude. These speed enhan
ements turnTSVM into a feasible tool for large s
ale appli
ations.2. We propose a new algorithm for semi-supervised SVMs utilizing well-established information theoreti
 ideas for global optimization usingmean �eld methods. This algorithm generates a family of obje
tivefun
tions whose non-
onvexity is 
ontrolled by an annealing parame-ter. The global minimizer is tra
ked with respe
t to this parameter.This approa
h alleviates the problem of lo
al minima in the TSVMoptimization pro
edure whi
h results in signi�
antly better solutionson many problems, while also being 
omputationally attra
tive.3. We 
ondu
t an experimental study on many do
ument 
lassi�
ationtasks with several thousands of examples and features. This study
learly shows the utility of our tools for large s
ale problems.The modi�ed �nite Newton algorithm (abbreviated L2-SVM-MFN) ofKeerthi and De
oste [15℄ for fast training of linear SVMs is a key subroutinefor our algorithms.This paper is arranged as follows. In se
tion 2 we des
ribe a slightlymodi�ed version of L2-SVM-MFN algorithm to suit the des
ription of thesemi-supervised methods (TSVM and MFA) in se
tion 3. Experimentalresults are presented in se
tion 4. In se
tion 5, we dis
uss some extensionsand appli
ations of our methods.2 Modi�ed Finite Newton Linear L2-SVMThe modi�ed �nite Newton L2-SVM method [15℄ (L2-SVM-MFN) is a re-
ently developed training algorithm for Linear SVMs that is ideally suited1The assumption that points in a 
luster should have similar labels. The role of unla-beled data is to identify 
lusters and high density regions in the input spa
e.3



to sparse datasets with large number of examples and possibly large num-ber of features. In a typi
al appli
ation like do
ument 
lassi�
ation, manytraining do
uments are 
olle
ted and pro
essed into a format that is 
on-venient for mathemati
al manipulations. For example, ea
h do
ument maybe represented as a 
olle
tion of d features asso
iated with a vo
abulary ofd words. Theses feature may simply indi
ate the presen
e or absen
e of aword (binary features), or measure the frequen
y of a word suitably nor-malized by its importan
e (TFIDF features) (see e.g [18℄ for more detailsand other representations). Even though the vo
abulary might be large,only a very small number of words appear in any do
ument relative to thevo
abulary size. Thus, ea
h do
ument is sparsely represented as a bag ofwords. A label is then manually assigned to ea
h do
ument identifying aparti
ular 
ategory to whi
h it belongs (e.g \
ommer
ial" or not). The taskof a 
lassi�
ation algorithm (e.g SVM) is produ
e a 
lassi�er that 
an reli-ably identify the 
ategory of new do
uments based on information extra
tedfrom training do
uments .Given a binary 
lassi�
ation problem with l labeled examples fxi; yigli=1where the input patterns xi 2 Rd (e.g a do
ument) and the labels yi 2f+1;�1g, L2-SVM-MFN provides an eÆ
ient primal solution to the follow-ing SVM optimization problem:w? = argminw2Rd 12 lXi=1 max �0; 1� yi (wTxi)�2 + �2 kwk2 (1)Here, � is a real-valued regularization parameter and sign(w?Tx) is the �nal
lassi�er.This obje
tive fun
tion di�ers from the standard SVM problem in somerespe
ts. First, instead of using the hinge loss as the data �tting term, thesquare of the hinge loss (or the so-
alled quadrati
 soft margin loss fun
tion)is used. This makes the obje
tive fun
tion 
ontinuously di�erentiable, allow-ing easier appli
ability of gradient te
hniques. Se
ondly, the bias term (\b")is also regularized. In the problem formulation of Eqn. 1, it is impli
itly as-sumed that an additional 
omponent in the weight ve
tor and a 
onstantfeature in the example ve
tors have been added to indire
tly in
orporate thebias. This formulation 
ombines the simpli
ity of a least squares aspe
t withalgorithmi
 advantages asso
iated with SVMs. We also note that all the dis-
ussion in this paper 
an be applied to other loss fun
tions su
h as Huber'sLoss and rounded Hinge loss using the modi�
ations outlined in [15℄.We will 
onsider a version of L2-SVM-MFN where a weighted quadrati
soft margin loss fun
tion is used.w? = argminw2Rd f(w) = argminw2Rd 12 Xi2|(w) 
i d2i (w) + �2 kwk2 (2)4



Here we exa
tly rewrite Eqn. 1 in terms of a partial summation of di(w) =wTxi�yi over an index set |(w) = fi : yi (wTxi) < 1g. Additionally, the lossasso
iated with the ith example has a 
ost 
i. f(w) refers to the obje
tivefun
tion being minimized, evaluated at a 
andidate solution w. Note that ifthe index set |(w) were independent of w and ran over all data points, thiswould simply be the obje
tive fun
tion for weighted linear regularized leastsquares (RLS).Following [15℄, we observe that f is a stri
tly 
onvex, pie
ewise quadrati
,
ontinuously di�erentiable fun
tion having a unique minimizer. The gradi-ent of f at w is given by:r f(w) = � w + Xi2|(w) 
i di(w) xi = � w +XT|(w)C|(w) �X|(w)w � Y|(w)�where X|(w) is a matrix whose rows are the feature ve
tors of training points
orresponding to the index set |(w), Y|(w) is a 
olumn ve
tor 
ontaininglabels for these points, and C|(w) is a diagonal matrix that 
ontains the
osts 
i for these points along its diagonal.L2-SVM-MFN is a primal algorithm that uses the Newton's Method forun
onstrained minimization of a 
onvex fun
tion. The 
lassi
al Newton'smethod is based on a se
ond order approximation of the obje
tive fun
tion,and involves updates of the following kind:w(k+1) = w(k) + Æ(k) n(k) (3)where the step size Æk 2 R, and the Newton dire
tion nk 2 Rd is given by:n(k) = � hr2 f �w(k)�i�1r f �w(k)�Here, r f �w(k)� is the gradient ve
tor andr2 f �w(k)� is the Hessian matrixof f at w(k). However, the Hessian does not exist everywhere, sin
e f is nottwi
e di�erentiable at those weight ve
tors w where wTxi = yi for someindex i.2 For this reason, a �nite Newton method designed by Mangasarian[12℄ works around this issue through a generalized de�nition of the Hessianmatrix. On the other hand, the modi�ed �nite Newton pro
edure [15℄pro
eeds as follows. The step �w(k) = w(k)+n(k) in the Newton dire
tion 
anbe seen to be given by solving the following linear system asso
iated witha weighted linear regularized least squares problem over the data subsetde�ned by the indi
es |(w(k)):h�I +XT|(w(k))C|(w(k))X|(w(k))i �w(k) = XT|(w(k))C|(w(k))Y|(w(k)) (4)2In the neighborhood of su
h a w, the index i leaves or enters |(w). However, atw; di(w) = 0. So f is 
ontinuously di�erentiable inspite of these index jumps.5



where I is the identity matrix. On
e �w(k) is obtained, w(k+1) is obtained fromEqn. 3 by setting w(k+1) = w(k) + Æk( �w(k) �w(k)) after performing an exa
tline sear
h for Æk, i.e by exa
tly solving a one-dimensional minimizationproblem: Æ(k) = argminÆ�0 f �w(k) + Æ( �w(k) �w(k))�The modi�ed �nite Newton pro
edure has the property of �nite 
onver-gen
e to the optimal solution. The key features that bring s
alability andnumeri
al robustness to L2-SVM-MFN are: (a) Solving the regularized leastsquares system of Eqn. 4 by a numeri
ally well-behaved Conjugate Gradients
heme [8℄ referred to as CGLS, whi
h is designed for large, sparse data ma-tri
es X. The bene�t of the least squares aspe
t of the loss fun
tion 
omesin here to provide a

ess to a powerful set of tools in numeri
al 
omputation.(b) Due to the one-sided nature of margin loss fun
tions, these systems arerequired to be solved over only restri
ted index sets |(w) whi
h 
an be mu
hsmaller than the whole dataset. This also allows additional heuristi
s tobe developed su
h as terminating CGLS early when working with a 
rudestarting guess like 0, and allowing the following line sear
h step to yield apoint where the index set |(w) is small. Subsequent optimization steps thenwork on smaller subsets of the data3.We now outline the details of the CGLS and Line sear
h pro
edures.2.1 CGLSThe CGLS pro
edure solves large, sparse, weighted regularized least squaresproblems of the following form:��I +XTCX� � = XTCY (5)The key 
omputational issue here is to avoid the 
onstru
tion of the largeand dense matrix XTCX, and work only with the sparse matrix X and thediagonal 
ost matrix (stored as a ve
tor) C.Starting with a guess solution, �0, Conjugate Gradient performs itera-tions of the form: �(j+1) = �(j) + 
(j)p(j)where p(j) is a sear
h dire
tion and 
(j) 2 R gives the step in that dire
tion.The residual ve
tor (the di�eren
e ve
tor between LHS and RHS of Eqn. 5for a 
andidate �, whi
h is also the gradient of the asso
iated quadrati
 formevaluated at �) is therefore updated as:r(j+1) = XTCY � ��I +XTCX� �(j+1) = XT z(j+1) � ��(j+1)3An implementation would also in
lude heuristi
s 1 and 2, and some ex
eption handlingsteps as des
ribed in [15℄. 6



Here, we introdu
e the following intermediate ve
tors:z(j+1) = C �Y �X�(j+1)� = C �Y � hX�(j) + 
(j)Xp(j)i�= z(j) � 
(j)Cq(j)where q(j) = Xp(j)The optimal step-size 
(j) is given by:
(j) = kr(j)k2p(j)T (
I +XTCX)p(j) = kr(j)k2�kp(j)k2 + q(j)TCq(j)Finally, the sear
h dire
tions are updated as:p(j+1) = r(j+1) + !(j)p(j) where !(j) = kr(j+1)k2kr(j)k2It 
an be shown that these updates impli
itly and in
rementally 
onstru
ta 
onjugate basis4 p0; p1 : : : of Rd on the 
y; ea
h 
andidate solution �j isoptimal in the subspa
e de�ned by the 
urrent basis elements, 
onvergingto the desired solution in no more (and typi
ally mu
h fewer) than d steps.The CGLS iterations are terminated when the norm of the gradientr(j+1) be
omes small enough relative to the norm of the iterate z(j+1) or ifthe number of iterations ex
eed a 
ertain maximum allowable number.The CGLS iterations are listed in Table 2. The data matrix X is onlyinvolved in the 
omputations through matrix ve
tor multipli
ation for 
om-puting the iterates q(j) and r(j). This forms the dominant expense in ea
hiteration (the produ
t with C simply s
ales ea
h element of a ve
tor). Ifthere are n0 non-zero elements in the data matrix, this has O(n0) 
ost. Asa subroutine of L2-SVM-MFN, CGLS is typi
ally 
alled on a small subsetof the full data set. The total 
ost of CGLS is O(t
glsn0) where t
gls isthe number of iterations, whi
h depends on the pra
ti
al rank of X and istypi
ally found to be very small relative to the dimensions of X (number ofexamples and features). The memory requirements are also minimal: only�ve ve
tors need to be maintained, in
luding the outputs over the 
urrentlya
tive set of data points. For more details on Conjugate gradient, see [2℄.Finally, an important feature of CGLS is worth emphasizing. Supposethe solution � of a regularizer least squares problem is available, i.e thelinear system in Eqn. 5 has been solved using CGLS. If there is a need tosolve a perturbed linear system, it is greatly advantageous in many settingsto start the CG iterations for the new system with � as the initial guess.This is often 
alled seeding. If the starting residual is small, CGLS 
an
onverge mu
h faster than with a guess of 0 ve
tor. The utility of this feature4A basis with mutually orthogonal elements in the sense vT ˆ�I +XTCX˜u = 0 forany pair of elements u; v. 7



depends on the nature and degree of perturbation. In L2-SVM-MFN, the
andidate solution w(k) obtained after line sear
h in iteration k is seeded forthe CGLS 
omputation of �wk. Also, in tuning � over a range of values, itis 
omputationally valuable to seed the solution for a parti
ular � onto thenext value. For the semi-supervised SVM implementations with L2-SVM-MFN, we will seed solutions a
ross linear systems with slightly perturbedlabel ve
tors, data matri
es and 
osts.2.2 Line Sear
hGiven the ve
tors w; �w in some iteration of L2-SVM-MFN, the line sear
hstep requires us to solve:Æ? = argminÆ�0 �(Æ) = f (wÆ)where wÆ = w + Æ( �w �w).The one-dimensional fun
tion �(Æ) is the restri
tion of the obje
tive fun
-tion f on the ray from w onto �w. Hen
e, like f , �(Æ) is also a 
ontinuouslydi�erentiable, stri
tly 
onvex, pie
ewise quadrati
 fun
tion with a uniqueminimizer Æ? given by �0(Æ?) = 0. Thus, one needs to �nd the root of thepie
ewise linear fun
tion�0(Æ) = �wTÆ ( �w � w) + Xi2|(wÆ) 
idi(wÆ)( �oi � oi) (6)where o = Xw; �o = X �w.The linear pie
es of �0 are de�ned over those intervals where |(wÆ) re-mains 
onstant. Thus, the break points o

ur at a 
ertain set of values Æiwhere wTÆixi = yi for some data point indexed by i, i.e Æi = yi�oi�oi�oi = 1�yioiyi(�oi�oi) .Among these values, one needs to only 
onsider those indi
es i where Æi � 0i.e if i 2 |(w) (then yioi < 1), so yi(�oi�oi) > 0 or if i =2 |(w) (then yioi > 1),so yi(�oi�oi) < 0. When Æ is in
reased past a Æi, in the former 
ase the indexi leaves |(w) and in the latter 
ase it enters |(w). Reordering the indi
es sothat Æi are sorted in a non-de
reasing order as Æj1 ; Æj2 : : :, the root is theneasily 
he
ked in ea
h interval (Æjk ; Æjk+1); k = 1; 2 : : : by keeping tra
k ofthe slope of the linear pie
e in that interval. The slope is 
onstant for ea
hinterval and non-de
reasing as the sear
h progresses through these orderedintervals. The interval in whi
h the slope be
omes non-negative for the �rsttime bra
kets the root. De�ning the extension of the linear pie
e in theinterval (Æjk ; Æjk+1) as �0k(Æ) = �wTÆ ( �w�w)+Pi2|(wÆjk ) 
idi(wÆ)( �oi�oi), theslope and the root 
omputations are 
onveniently done by keeping tra
k ofL = �0k(0) = �wT ( �w � w) +Pi2|(wÆjk ) 
i(oi � yi)( �oi � oi) and R = �0k(1) =� �wT ( �w � w) +Pi2|(wÆjk ) 
i(�oi � yi)( �oi � oi). The full line sear
h routine isoutlined in Table 3. 8



Table 1 provides an abridged pseudo-
ode for L2-SVM-MFN. See [15℄ fornumerous other details. L2-SVM-MFN alternates between 
alls to CGLSand line sear
hes. Its 
omputational 
omplexity therefore is O(tmfn�t
glsn0)where tmfn is the number of outer iterations of CGLS 
alls and line sear
h,and �t
gls is the average number of CGLS iterations. These depend on thedata set and the toleran
e desired in the stopping 
riterion, but are typi
allyvery small5. Therefore, the 
omplexity is found to be e�e
tively linear inthe number of entries in the data matrix.3 Semi-supervised Linear SVMsWe now assume we have l labeled examples fxi; yigli=1 and u unlabeledexamples fx0jguj=1 with xi; x0j 2 Rd and yi 2 f�1;+1g. Our goal is to
onstru
t a linear 
lassi�er sign(wTx) that utilizes unlabeled data, typi
allyin situations where l � u. We present semi-supervised algorithms thatprovide L2-SVM-MFN the 
apability of dealing with unlabeled data.3.1 Transdu
tive SVMTransdu
tive SVM, originally proposed in [19℄, appends an additional termin the SVM obje
tive fun
tion whose role is to drive the 
lassi�
ation hy-perplane towards low data density regions. Variations of this idea haveappeared in the literature [10, 1, 9℄. Sin
e [10℄ appears to be the most nat-ural extension of standard SVMs among these methods, and is popularlyused in Text 
lassi�
ation appli
ations, we will fo
us on developing its larges
ale implementation.The following optimization problem is setup for standard TSVM6:w? = argminw2Rd;fy0j2f�1;+1gguj=1 �2kwk2 + 12l lXi=1 max �0; 1� yi (wTxi)�+ �02u uXj=1max �0; 1� y0j (wTx0j)�subje
t to: 1u uXj=1max �0; sign(wTx0j)� = rThe labels on the unlabeled data, y01 : : : y0u, are f+1;�1g-valued variablesin the optimization problem. In other words, TSVM seeks a hyperplanew and a labeling of the unlabeled examples, so that the SVM obje
tive5For example, [15℄ reports a text 
lassi�
ation experiment involving 198788 examplesand 252472 features where tmfn = 11; �t
gls = 102.6The bias term is typi
ally ex
luded from the regularizer, but this fa
tor is not expe
tedto make any signi�
ant di�eren
e. 9



fun
tion is minimized, subje
t to the 
onstraint that a fra
tion r of theunlabeled data be 
lassi�ed positive. SVM margin maximization in thepresen
e of unlabeled examples 
an be interpreted as an implementation ofthe 
luster assumption. In the optimization problem above, �0 is a user-provided parameter that provides 
ontrol over the in
uen
e of unlabeleddata 7. If there is enough labeled data, �; �0; r 
an be tuned by 
ross-validation. An initial estimate of r 
an be made from the fra
tion of labeledexamples that belong to the positive 
lass and subsequent �ne tuning 
anbe done based on performan
e on a validation set.This optimization is implemented in [10℄ by �rst using an indu
tive SVMto label the unlabeled data and then iteratively swit
hing labels and retrain-ing SVMs to improve the obje
tive fun
tion. The TSVM algorithm wrapsaround an SVM training pro
edure. The original (and widely popular) im-plementation of TSVM uses the SVM-Light software. There, the trainingof SVMs in the inner loops of TSVM uses dual de
omposition te
hniques.As shown by experiments in [15℄, in sparse, linear settings one 
an obtainsigni�
ant speed improvements with L2-SVM-MFN over SVM-Light. Thus,by implementing TSVM with L2-SVM-MFN, we expe
t similar improve-ments for semi-supervised learning on large, sparse datasets. As we will see,the L2-SVM-MFN retraining steps in the inner loop of TSVM are typi
allyexe
uted extremely fast by using seeding te
hniques. Additionally, we alsopropose a version of TSVM where more than one pair of labels may beswit
hed in ea
h iteration. These speed-enhan
ement details are dis
ussedin the following subse
tions.3.1.1 Implementing TSVM Using L2-SVM-MFNTo develop the TSVM implementation with L2-SVM-MFN, we need to 
on-sider the obje
tive fun
tion 
orresponding to Eqn. 7 but with the L2 lossfun
tion:w? = argminw2Rd;fy0j2f�1;+1gguj=1 �2 kwk2 + 12l lXi=1 max �0; 1 � yi (wTxi)�2+ �02u uXj=1max �0; 1� y0j (wTx0j)�2subje
t to: 1u uXj=1max �0; sign(wTx0j)� = r (7)7Suppose, the data has distin
t 
lusters with a large margin, but the 
luster assumptiondoes not hold i.e the labeling given by the supervised 
lassi�er is a
tually the true labelingeven though it 
uts the 
lusters. In su
h 
ases, �0 
an be set to 0 and standard SVM isretrieved. In general, �0 needs to be tuned for ea
h data set.10



Figure 1: L2 Loss fun
tion over unlabeled examples for Transdu
tive SVM
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Note that this obje
tive fun
tion above 
an also be equivalently writtenin terms of the following loss over ea
h unlabeled example x:min�max �0; 1� (wTx)�2 ;max �0; 1 + (wTx)�2� = max �0; 1 � jwTxj�2Here, we pi
k the value of the label variable y that minimizes the loss onthe unlabeled example x, and rewrite in terms of the absolute value of theoutput of the 
lassi�er on x. This loss fun
tion is shown in Fig. 1. We note inpassing that, L1 and L2 loss terms over unlabeled examples are very similaron the interval [�1;+1℄. The non-
onvexity of this loss fun
tion impliesthat the TSVM training pro
edure is sus
eptible to lo
al optima issues. Inthe next se
tion, we will outline a mean �eld annealing pro
edure that 
anover
ome this problem.The TSVM algorithm with L2-SVM-MFN is outlined in Table 4 and
losely follows the presentation in [10℄8. A 
lassi�er is obtained by �rstrunning L2-SVM-MFN on just the labeled examples. Temporary labels areassigned to the unlabeled data by thresholding the soft outputs of this 
las-si�er so that the fra
tion of the total number of unlabeled examples thatare temporarily labeled positive equals the parameter r.Then starting from a small value of �0, the unlabeled data is graduallybrought in by in
reasing �0 by a fa
tor of 2 in the outer loop. This gradualin
rease of the in
uen
e of the unlabeled data is a way to prote
t TSVMfrom being immediately trapped in a lo
al minimum. An inner loop identi�espairs of unlabeled examples with positive and a negative temporary labelssu
h that swit
hing these labels would de
rease the obje
tive fun
tion. L2-SVM-MFN is then retrained with the swit
hed labels.8A minor di�eren
e is that in our implementation, we did not use separate 
ost fa
torsfor balan
ing loss terms for the positive and negative 
lass11



3.1.2 Multiple Swit
hingThe TSVM algorithm presented in [10℄ involves swit
hing a single pair oflabels. We propose a variant where upto S pairs are swit
hed su
h that theobje
tive fun
tion improves. Here, S is a user 
ontrolled parameter. SettingS = 1 re
overs the original TSVM algorithm, whereas setting S = u=2swit
hes as many pairs as possible in the inner loop (Loop 2 in Table 4) ofTSVM. The implementation is 
onveniently done as follows:1. Identify unlabeled examples with a
tive indi
es and 
urrently positivelabels. Sort 
orresponding outputs in as
ending order. Let the sortedlist be L+.2. Identify unlabeled examples with a
tive indi
es and 
urrently negativelabels. Sort 
orresponding outputs in des
ending order. Let the sortedlist be L�.3. Pi
k pairs of elements, one from ea
h list, from the top of these listsuntil either a pair is found su
h that the output from L+ is greaterthan the output from L�, or if S pairs have been pi
ked.4. Swit
h the 
urrent labels of these pairs.Using arguments similar to Theorem 2 in [10℄ we 
an show that Transdu
-tive L2-SVM-MFN with multiple-pair swit
hing 
onverges in a �nite numberof steps.Proposition: Transdu
tive L2-SVM-MFN with multiple-pair swit
hing
onverges in �nite number of steps.Proof: The outer loop (marked Loop 1 in Table 4) 
learly terminatesin �nite number of steps. Ea
h 
all to L2-SVM-MFN terminates in �nitenumber of iterations due to Theorem 1 in [15℄. We only need to showthat Loop 2 also has �nite termination. Let J(w; Y 0) be the value of theTSVM obje
tive fun
tion for some 
andidate weight ve
tor w and 
andidatelabel ve
tor Y 0 = [y01 : : : y0u℄ over the unlabeled data. Let w(Y 0); Y 0 be theoperating variables at the end of an iteration of loop 2 where w(Y 0) =argminw2Rd J(w; Y 0). After swit
hing labels, let the new operating labelve
tor be Y 00. It is easy to see that:J(w(Y 0); Y 0) > J(w(Y 0); Y 00) � J(w(Y 00); Y 00)The se
ond inequality follows sin
e w(Y 00) minimizes J(w; Y 00) over all w.To see the �rst inequality observe that for any pair of data points (say withindi
es i; j) whose labels are swit
hed, the following 
onditions are satis�ed:y0i = 1; y0j = �1; w(Y 0)Tx0i < 1;�w(Y 0)Tx0j < 1; w(Y 0)Tx0i < w(Y 0)Tx0j.12



The terms 
ontributed by this pair to the obje
tive fun
tion de
rease afterswit
hing labels sin
e the swit
hing 
onditions imply the following:max[0; 1� wTx0i℄2 +max[0; 1 + wTx0j ℄2 = (1� wTx0i)2 + (1 + wTx0j)2> (1 +wTx0i)2 + (1� wTx0j)2 � max[0; 1 + wTx0i℄2 +max[0; 1� wTx0j℄2Thus, swapping the labels of multiple pairs that satisfy the swit
hing 
on-ditions redu
es the obje
tive fun
tion.Sin
e at the end of 
onse
utive iterations J(w(Y 0); Y 0) > J(w(Y 00); Y 00),Loop 2 must terminate in �nite number of steps be
ause there are only a�nite number of possible label ve
tors. �We are unaware of any prior work that suggests and evaluates this simpleheuristi
 of swit
hing more than one label. Our experimental results inse
tion 4 establish that this heuristi
 is very e�e
tive in speeding up TSVMtraining while maintaining generalization performan
e on textual problems.3.1.3 SeedingThe e�e
tiveness of L2-SVM-MFN on large sparse datasets 
ombined withthe eÆ
ien
y gained from seeding w in the re-training steps (after swit
hinglabels or after in
reasing �0) make this algorithm quite attra
tive. Consideran iteration in Loop 2 of TSVM where a new pair of labels has been swit
hed,and the solution w from the last retraining of L2-SVM-MFN (marked as Re-training 2 in Table 4) is available for seeding. A

ording to Theorem 1 in[15℄, when the last L2-SVM-MFN 
onverged, its solution w is given by thelinear system9: h�I +XTI(w)CI(w)XI(w)iw = XTI(w)CI(w)Ywhere Y is the 
urrent label ve
tor. When labels Yi; Yj are swit
hed, ba
kat the top of loop 2, the label ve
tor is updated as:Y = Y + 2eijwhere eij is a ve
tor whose elements zero everywhere ex
ept in the ith andthe jth position whi
h are +1 and -1 or -1 and +1 respe
tively. Note alsothat if i; j 2 |(w) the re-training of L2-SVM-MFN with w as the startingguess immediately en
ounters a 
all CGLS to solve the following perturbedsystem: h�I +XT|(w)C|(w)X|(w)i ~w = XT|(w)C|(w) [Y + 2eij ℄9The subsequent line sear
h does not 
hange this w; therefore, the optimality 
onditionsare 
he
ked immediately after the CGLS step13



The starting residual ve
tor r0 is given by:r0 = XT|(w)C|(w) [Y + 2eij ℄� h�I +XT|(w)C|(w)X|(w)iw= r(w) + 2XT|(w)C|(w)eij� �+ 2�0kxi � xjkwhere r(w) in the se
ond step is the �nal residual of w whi
h fell below � atthe 
onvergen
e of the last re-training. In appli
ations like Text 
ategoriza-tion, TFIDF feature ve
tors are often length normalized and have positiveentries. Therefore, kxi � xjk � p2. This gives the following bound on thestarting residual: r0 � �+ 2p2�0whi
h is mu
h smaller than a bound of npn�0 with a zero starting ve
tor.Seeding is quite e�e
tive for Loop 1 as well, where �0 is 
hanged, as demon-strated by experiments in [15℄. With the two additional loops, the 
omplex-ity of Transdu
tive L2-TSVM-MFN be
omes O(nswit
hes�tmfn�t
glsn0), wherenswit
hes is the number of label swit
hes. The outer loop exe
utes a �xednumber of times; the inner loop 
alls L2-TSVM-MFN nswit
hes times. Typ-i
ally, nswit
hes is expe
ted to strongly depend on the data set and also onthe number of labeled examples. Sin
e it is diÆ
ult to apriori estimate thenumber of swit
hes, this is an issue that is best understood from empiri
alobservations.3.2 Mean Field AnnealingThe transdu
tive SVM loss fun
tion over the unlabeled examples 
an be seenfrom Fig. 1 to be non-
onvex. This makes the TSVM optimization pro
eduresus
eptible to lo
al minimum issues 
ausing a loss in its performan
e in manysituations, e.g as re
orded in [6℄. We now present a new algorithm based onmean �eld annealing that 
an potentially over
ome this problem while alsobeing 
omputationally very attra
tive for large s
ale appli
ations.Mean Field Annealing [14, 3, 4℄ (MFA) is an established tool for 
ombina-torial optimization that approa
hes the problem from information theoreti
prin
iples. The dis
rete variables in the optimization problem are relaxed to
ontinuous probability variables and a non-negative temperature parameterT is used to tra
k the global optimum.We begin by re-writing the TSVM obje
tive fun
tion as follows:w? = argminw2Rd;f�j2f0;1gguj=1 �2 kwk2 + 12l lXi=1 max �0; 1 � yi (wTxi)�2+ �02u uXj=1 ��j max �0; 1 � (wTx0j)�2 + (1� �j)max �0; 1 + (wTx0j)�2�14



Here, we introdu
e binary valued variables �j = (1 + yj)=2. Let pj 2 [0; 1℄denote the belief probability that the unlabeled example x0j belongs to thepositive 
lass. The Ising model 10 of Mean �eld annealing motivates thefollowing obje
tive fun
tion, where we relax the binary variables �j to prob-ability variables pj, and in
lude entropy terms for the distributions de�nedby pj:w?T = argminw2Rd;fpj2[0 1℄guj=1 �2 kwk2 + 12l lXi=1 max �0; 1� yi (wTxi)�2+ �02u uXj=1 �pj max �0; 1� (wTx0j)�2 + (1 � pj)max �0; 1 + (wTx0j)�2�+ T2u uXj=1 (pj log pj + (1� pj) log (1� pj)) (8)Here, the \temperature" T parameterizes a family of obje
tive fun
tions.The obje
tive fun
tion for a �xed T is minimized under the following 
lassbalan
ing 
onstraints: 1u uXj=1 pj = r (9)where r is the fra
tion of the number of unlabeled examples belonging tothe positive 
lass. As in TSVM, r is treated as a user-provided parameter.It may also be estimated from the labeled examples.The solution to the optimization problem above is tra
ked as the tem-perature parameter T is lowered to 0. The �nal solution is given as:w? = limT!0w?T (10)In pra
ti
e we monitor the value of the obje
tive fun
tion in the optimizationpath and return the solution 
orresponding to the minimum value a
hieved.To develop an intuition for the working on this method, we 
onsider theloss term in the obje
tive fun
tion asso
iated with an unlabeled exampleas a fun
tion of the output of the 
lassi�er. This loss term is based on
al
ulations to be des
ribed below. Fig. 2 plots this loss term for variousvalues of T . As the temperature is de
reased, the loss fun
tion deformsfrom a squared-loss shape where a global optimum is easier to a
hieve, tothe TSVM loss fun
tion in Fig. 1. At high temperatures a global optimumis easier to obtain. The global minimizer is then slowly tra
ked as thetemperature is lowered towards zero.10A multi
lass extension would use the Potts glass model. There, one would have toappend the entropy of the distribution over multiple 
lasses to a multi-
lass obje
tivefun
tion. 15



Figure 2: L2 Loss fun
tion over unlabeled examples for Transdu
tive SVM
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The optimization is done in stages, starting with high values of T andthen gradually de
reasing T towards 0. For ea
h T , the problem in Eqns.8,9 is optimized by alternating the minimization over w and p = [p1 : : : pu℄respe
tively. Fixing p, the optimization over w is done by L2-SVM-MFN.Fixing w, the optimization over p 
an also be done easily as des
ribed below.Both these problems involve 
onvex optimization and 
an be done exa
tlyand eÆ
iently. We now provide the details of these optimization steps.3.2.1 Optimizing wWe des
ribe the steps to eÆ
iently implement the L2-SVM-MFN loop foroptimizing w keeping p �xed. The 
all to L2-SVM-MFN is made on the dataX̂ = �XT X 0T X 0T �T whose �rst l rows are formed by the labeled examples,and the next 2u rows are formed by the unlabeled examples appearing astwo repeated blo
ks. The asso
iated label ve
tor and 
ost matrix are givenby Ŷ = [y1; y2:::yl; uz }| {1; 1; :::1; uz }| {�1;�1::: � 1℄C = diag 2664 lz }| {1l :::1l ; uz }| {�0 p1u :::�0 puu uz }| {�0(1� p1)u :::�0(1� pu)u 3775 (11)Even though ea
h unlabeled data 
ontributes two terms to the obje
tivefun
tion, e�e
tively only one term 
ontributes to the 
omplexity. This isbe
ause matrix-ve
tor produ
ts, whi
h form the dominant expense in L2-SVM-MFN, are performed only on unique rows of a matrix. The output16



may be dupli
ated for dupli
ate rows. Infa
t, we 
an re-write the CGLS
alls in L2-SVM-MFN so that the unlabeled examples appear only on
e inthe data matrix. Consider the CGLS 
all at some iteration where the a
tiveindex set is | = |(w) for some 
urrent 
andidate weight ve
tor w:h�I + X̂T| C|X̂|i �w = X̂TC|Ŷ| (12)Note that if jwTx0j j � 1, the unlabeled example x0j appears as one rowin the data matrix X̂| with label given by �sign(wTx0j). If jwTx0j j < 1, theunlabeled example x0j appears as two identi
al rows X̂| with both labels. Let|l 2 1 : : : l be the indi
es of the labeled examples in the a
tive set, |01 2 1 : : : ube the indi
es of unlabeled examples with jwTx0jj � 1 and |02 2 1 : : : u be theindi
es of unlabeled examples with jwTx0jj < 1. Note that the index of everyunlabeled example appears in one of these sets i.e, |01 [ |02 = 1 : : : u. Eqn. 12may be re-written as:24�I + 1l Xi2|l xTi xi + �0u Xj2|01 
jx0Tj xj + �0u Xj2|02 x0Tj xj35 �w =1l Xi2|l yixi � �0u Xj2|01 
jsign(wTxj)xj + �0u Xj2|02(2pj � 1)xjwhere 
j = pj if sign(wTx0j) = �1 and 
j = 1 � pj if sign(wTx0j) = 1. Re-writing in matrix notation, we obtain an equivalent linear system that 
anbe solved by CGLS: h�I + ~XT ~C ~Xi �w = ~XT ~C ~Y (13)where ~X = [XT|l X 0℄, ~C is a diagonal matrix and ~Y is the ve
tor of e�e
tivelya
tive labels. These are de�ned by:~Cjj = 1l ; ~Yj = yi j 2 1 : : : j|lj~C(j+j|lj)(j+j|lj) = �0pju ; ~Yj+j|lj = 1 if j 2 1 : : : u ; j 2 |01; sign(wTx0j) = �1~C(j+j|lj)(j+j|lj) = �0(1� pj)u ; ~Yj+j|lj = �1 if j 2 1 : : : u j 2 |01; sign(wTx0j) = 1~C(j+j|lj)(j+j|lj) = �0u ; ~Yj+j|lj = (2pj � 1) if j 2 1 : : : u j 2 |02 (14)Thus, CGLS needs to only operate on data matri
es with one instan
eof ea
h unlabeled example using a suitably modi�ed 
ost matrix and labelve
tor. 17



After the CGLS step, one needs to 
he
k the optimality 
onditions. Theoptimality 
onditions 
an be re-written as:8 i 2 |l yi�oi � 1 + �8 i 2 |
l yi �oi � 1� �8 j 2 |01 j�o0j j � 1� �8 j 2 |02 j�o0j j � 1 + �For the subsequent line sear
h step, we reassemble appropriate output andlabel ve
tors to 
all the routine in Table 3. The steps for optmizing w areoutlined in Table 7.3.2.2 Optimizing pFor the latter problem of optimizing p for a �xed w, we 
onstru
t the La-grangian:L = �02u uXj=1 �pj max �0; 1 � (wTx0j)�2 + (1� pj)max �0; 1 + (wTx0j)�2�+ T2u uXj=1 (pj log pj + (1� pj) log (1� pj))� � 241u uXj=1 pj � r35Di�erentiating the Lagrangian with respe
t to pj , we get:� L�pj = �02u �max �0; 1 � (wTx0j)�2 �max �0; 1 + (wTx0j)�2�+ T2u log pj1� pj��u = 0De�ne: gj = �0 �max �0; 1� (wTx0j)�2 �max �0; 1 + (wTx0j)�2�Then, the expression for pj is given by:pj = 11 + e gj�2�T (15)Substituting this expressing in the balan
e 
onstraint in Eqn. 9, we get aone-dimensional non-linear equation in 2�:1u uXj=1 11 + e gi�2�T = rThe value of 2� is 
omputed exa
tly by using a hybrid 
ombination ofNewton-Raphson iterations and the bise
tion method to �nd the root of18



the fun
tion B(�) = 1u Pl+ui=l+1 11+e gi��T � r. This method is rapid due to thequadrati
 
onvergen
e properties of Newton-Raphson iterations and fail-safedue to bise
tion steps. Note that the root exists and is unique, sin
e one
an see that B(�) ! 1 � r > 0 when � ! 1, B(�) ! �r < 0 when� ! �1, and B(�) is a 
ontinuous, monotoni
ally in
reasing fun
tion (seeFig.3). The root �nding begins by bra
keting the root in the interval [��; �+℄so that B(��) < 0; B(�+) > 0 where ��; �+ are given by:�� = min(g1 : : : gu)� T log 1� rr�+ = max(g1 : : : gu)� T log 1� rrThe hybrid root �nding algorithm performs Newton-Raphspon iterationswith a starting guess of ��+�+2 and invokes the bise
tion method wheneveran iterate goes outside the bra
kets. The steps for optimizing p are outlinedin Table 6.Figure 3: The value of B(�) = 1u Pl+ui=l+1 11+e gi��T � r as a fun
tion of �.Here, T = 1; r = 0:15; gi 2 [�5; 5℄. The root is marked on the plot.
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3.2.3 Stopping CriteriaFor a �xed T , this alternate minimization pro
eeds until some stopping 
rite-rion is satis�ed. A natural 
riterion is the mean Kullba
k-Liebler divergen
e(relative entropy)11 KL(p; q) between 
urrent values of pi and the values,say qi, at the end of last iteration. Thus the stopping 
riterion for �xed T11Other distan
e measures e.g eu
lidean distan
e may also be used instead.19



is: KL(p; q) = uXj=1 pj log pjqj + (1� pj) log 1� pj1� qj < u� (16)A good value for � is 10�6. The temperature may be de
reased in the outerloop until the total entropy falls below a threshold, whi
h we take to be� = 10�6 as above.H(p) = � uXj=l (pj log pj + (1� pj) log (1� pj)) < u� (17)Note that we set upper limits on the total number of iterations in bothloops. Often the entropy may 
onverge to a value larger than the stoppingthreshold and the outer loop is exited by exeeding the maximum iterationsallowed. In su
h 
ases, due to seeding, the extra iterations add insigni�
ant
ost.The TSVM obje
tive fun
tion is monitored as the optimization pro
eeds.J(w) = �2 kwk2 + 12l lXi=1 max �0; 1� yi (wTxi)�2+ �02u uXj=1max �0; 1 � jwTx0j j�2 (18)The weight ve
tor 
orresponding to the minimum transdu
tive 
ost in theoptimization path is returned as the solution.The steps of mean �eld annealing with L2-SVM-MFN are outlined inTable 5.4 Empiri
al StudySemi-supervised learning experiments were 
ondu
ted to test these algo-rithms on six text binary 
lassi�
ation problems. These are listed in Table 8.Table 8: Two-
lass datasets used in the experiments : d is the data dimen-sionality, �n0 is the average number of non-zero entries per example ve
tor,l + u is the number of labeled and unlabeled examples, t is the number oftest examples. Dataset d �n0 l + u tauto-vs-aviation 20707 51.32 35588 35587real-vs-simulated 20958 51.32 36155 36154

at 47236 75.93 17332 5787g
at 47236 75.93 17332 578733-vs-36 59072 26.56 41346 41346p
ma
 7511 54.58 1460 48620



The auto-vs-aviation and real-vs-simulated binary 
lassi�
ation datasets
ome from a 
olle
tion of UseNet arti
les 12 from four dis
ussion groups, forsimulated auto ra
ing, simulated aviation, real autos, and real aviation13.The 

at and g
at data sets pose the problem of separating 
orporate andgovernement related arti
les respe
tively; these are the top-level 
ategoriesin the RCV1 training data set [11℄. These data sets 
reate an interestingsituation where semi-supervised learning is required to learn di�erent lowdensity separators respe
ting di�erent 
lassi�
ation tasks in the same inputspa
e. The 33-vs-36 data set is a subset of a multi
lass Yahoo shoppingdata set. Finally, the p
ma
 data set is a small subset of the 20-newsgroupsdata popularly used in semi-supervised learning literature (e.g in [6, 16℄).The results below are averaged over 10 random14 splits of training (labeledand unlabeled) and test sets. The amount of labeled data in the trainingset was gradually varied to generate learning 
urves. We use a default valueof �0 = 1 for all datasets ex
ept15 for auto-vs-aviation and 

at where�0 = 10. The default value of � = 0:001 was used for all datasets.Minimization of Obje
tive Fun
tionWe �rst examine the e�e
tiveness of TSVM and MFA in optimizing theTSVM obje
tive fun
tion. In Figure 4, we plot the minimum value of theobje
tive fun
tion a
hieved by TSVM and MFA with respe
t to varyingnumber of labels. As 
ompared to TSVM, we see that MFA performs sig-ni�
antly better optimization on auto-vs-aviation, 

at, and p
ma
 datasetsand slightly better optimization on the other datasets.Transdu
tion Learning CurvesIn Figures 5, 6, 7 we plot error rates over unlabeled examples for SVM,TSVM and MFA with respe
t to varying amounts of labeled data.The following observations 
an be made:1. Comparing the learning 
urves for SVM against the semi-supervisedalgorithms, the bene�t of unlabeled data is evident on all datasets,and is parti
ularly striking on auto-vs-aviation, real-vs-simulated, g
at,and p
ma
.2. On auto-vs-aviation and p
ma
 , MFA outperforms TSVM signif-i
antly. On 

at, MFA performs a mu
h better optimization butthis only translates into slight error rate improvements. MFA and12available at http://www.
s.umass.edu/�m

allum/data/sraa.tar.gz13We used the RAINBOW software [13℄ to generate feature ve
tors after removingwords that only appear in 10 or fewer do
uments.14The 
lass ratios are maintained in these splits.15This produ
ed better results for both TSVM and MFA. A 
areful optimization of �0was not attempted. 21



Figure 4: Minimum value of obje
tive fun
tion a
hieved by MFA and Trans-du
tive L2-SVM-MFN with respe
t to number of labels.
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TSVM are very 
losely mat
hed on g
at and 33-vs-36 . On real-vs-simulated dataset, TSVM and MFA perform very similar optimizationof the transdu
tion obje
tive fun
tion (see Figure 4), but appear toreturn very di�erent solutions. The TSVM solution returns lower errorrates as 
ompared to MFA on this dataset.3. For TSVM, on all datasets we found that multiple swit
hing returnednearly identi
al performan
e as single swit
hing. Sin
e it saves signif-i
ant 
omputation time, our study establishes multiple swit
hing as avaluable heuristi
 for appli
ations of TSVM.Out-of-Sample Learning CurvesIn Figures 8, 9, 10 we plot error rates over unseen test examples for SVM,TSVM and MFA with respe
t to varying amounts of labeled data. Com-paring with learning 
urves for transdu
tion, we see the observations in theprevious se
tion are also true for out-of-sample performan
e. Both TSVMand MFA provide high quality extension to unseen test data.
22



Figure 5: Transdu
tion error rate with respe
t to number of labels
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Computational TimingsIn Figure 11, we plot the average 
omputation time for MFA and TSVMwith 1, 10, 100 and maximum swit
hing. The following observations 
an bemade:1. The standard single swit
h TSVM is an order of magnitude slowerthan the multiple swit
hing variant.2. MFA takes a moderate amount of time. It is signi�
antly faster thansingle swit
h TSVM and typi
ally slower than TSVM with maximumswit
hing.3. The TSVM 
omputation time is more strongly dependent on the num-ber of labels than MFA.Comparison with SVMlightIn Table 9, we 
ompare our implementations with SVMlight at its defaultoptimization settings on the �rst split at the lowest end of the learning
urves. These 
omparisons demonstrate massive speedups with our methodsover the dual te
hniques used in SVMlight.Note that the results presented in this se
tion were obtained with aMATLAB implementation with a C interfa
e to the 
ore CGLS routine. Inour experiments, the 
omputational di�eren
e between single and multipleswit
hing may have been somewhat exaggerated due to implementation in23



Figure 6: Transdu
tion error rate with respe
t to number of labels
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MATLAB (sin
e single swit
hing involves more non-ve
torized loops whi
hare not optimized in MATLAB). We expe
t signi�
antly faster 
omputationtimes with a full C or a fortran implementation, espe
ially with parallel
omputation of matrix ve
tor produ
ts.Table 9: Speed (in se
onds) and error rate 
omparisons with SVMlight. S=1and S=max denote single and multiple-swit
hing implementations of TSVMwith the modi�ed �nite newton pro
edure.Dataset SVMlight S=1 S=max MFAauto-vs-aviation time 101759 5849 390 1446error rate 0.0664 0.0576 0.0575 0.0595real-vs-simulated time 498313 6244 373 1129error rate 0.1589 0.1430 0.1426 0.1460

at time 13540 2352 390 1185error rate 0.4071 0.2098 0.2081 0.1861g
at time 243840 1267 358 159error rate 0.0665 0.0646 0.0639 0.059133-vs-36 time 48390 7406 309 393error rate 0.2290 0.2140 0.2136 0.2206p
ma
 time 167 4 2 12error rate 0.0597 0.0782 0.0802 0.0556
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Figure 7: Transdu
tion error rate with respe
t to number of labels
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Importan
e of AnnealingTo 
on�rm the ne
essity of an annealing 
omponent (tra
king the minimizerwith respe
t to T ) in the optimization, we 
ompare MFA with the alternatingw,p optimization pro
edure where the temperature parameter is held �xedat T = 1 and T = 0:1. In Figure 12 we plot the minimum value of theobje
tive fun
tion a
hieved with and without annealing. The 
orrespondinglearning 
urves are plotted in Figure 13. We see that annealing provideshigher quality solutions as 
ompared to �xed temperature optimization.It is important to note that the gradual in
rease of �0 to the user-setvalue in TSVM is also a me
hanism to avoid lo
al optima. The non-
onvexpart of the obje
tive fun
tion is gradually in
reased to a desired value. Inthis sense, �0 simultaneously plays the role of an annealing parameter andalso 
ontrols the strength of the 
luster assumption. This dual role has theadvantage that a suitable �0 
an be 
hosen by monitoring performan
e ona validation set as the algorithm pro
eeds. In MFA, however, we dire
tlyuse an established framework for global optimization of a non-
onvex obje
-tive fun
tion, de
oupling annealing from the implementation of the 
lusterassumption. As our experiments show, this 
an lead to signi�
antly bettersolutions on many problems.
25



Figure 8: Test error rate with respe
t to number of labels
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Figure 9: Test error rate with respe
t to number of labels
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Figure 10: Test error rate with respe
t to number of labels
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Figure 11: Computation time with respe
t to number of labels for MFA andTransdu
tive L2-SVM-MFN with single and multiple swit
hes.
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Figure 12: Minimum value of obje
tive fun
tion a
hieved by MFA and a�xed temperature optimization with respe
t to number of labels.
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Figure 13: Error Rates a
hieved by MFA and a �xed temperature optimiza-tion with respe
t to number of labels.
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5 Extensions and Appli
ationsIn this se
tion, we 
olle
t our thoughts on various extensions and appli
a-tions of the methods proposed in this paper, and outline some dire
tions forfuture work.Non-linear Mean Field AnnealingIn many problems of interest one needs to 
onstru
t 
omplex, non-linear
lassi�
ation boundaries. The MFA algorithm 
an be extended to oper-ate in a non-linear Reprodu
ing Kernel Hilbert Spa
e (RKHS) of fun
tionsHK de�ned by a kernel fun
tion K. Spe
i�
ally, we solve an optimizationproblem of the following kind:f?T = argminf2HK ;fpj2[0 1℄guj=1 �2 kfk2K + 1l lXi=1 V (yi; xi; f)+�0u uXj=1 �pjV (1; x0j ; f) + (1� pj)V (�1; x0j ; f)�+Tu uXj=1 (pj log pj + (1� pj) log (1� pj)) subje
t to: 1u uXj=1 pj = rHere, V (y; x; f) is a loss fun
tion and kfkK is the norm of f in the RKHSHK . Annealing is performed by taking the limit f? = limT!0 f?T .By the representer theorem, the solution to the above problem, for �xedp, is given as: f?T (p) = l+uXi=1 �iK(x; xi)where the expansion 
oeÆ
ients �i depend on both T and p. Non-linearMFA 
an be easily implemented for a variety of loss fun
tions. For example,if the loss fun
tion V is 
ontinously di�erentiable, one 
an use a non-linearversion of the modi�ed �nite newton pro
edure to optimize the l+u primalvariables �. Alternatively, for the hinge loss V (y; x; f) = max [0; 1� yf(x)℄,one 
an use a standard implementation of sequential minimal optimization(SMO). This optimization is then alternated with optimization of p givenby a derivation similar to that in se
tion 3.2.2. In an outer loop, the tem-perature is gradually redu
ed.An interesting family of hybrid algorithms 
an be developed that runnon-linear MFA with a 
lass of kernels [16℄ that are adapted for semi-supervised learning, based on geometri
 stru
tures of the data estimatedusing a data-adja
en
y graph. The bene�ts of a hybrid approa
h that 
om-bines graph-based semi-supervised learning with TSVM-style optimizationhas been noted in [6℄. The former te
hniques provide data representations29



and 
omplexity notions that are better suited for semi-supervised learning,and the latter te
hniques 
omplement these with expli
it optimization overthe unknown labels.One-Class Problems, Clustering and Fully Supervised Learn-ingTSVM and MFA 
an be deployed in a variety of settings involving di�erentamounts of labeled and unlabeled data. Many real world settings presentthe task of identifying members of a 
ertain 
lass as opposed to distinguish-ing between well-spe
i�ed 
lasses. For example, in order to identify webdo
uments 
on
erning sports, it is mu
h easier to label sports do
umentsthan to label the diverse and ill-
hara
terized set of non-sports do
uments.In su
h problems, labeled examples 
ome from a single 
lass, very often withlarge amounts of unlabeled data 
ontaining some instan
es of the 
lass ofinterest and many instan
es of the \others" 
lass.Being a spe
ial 
ase of semi-supervised learning, the problem of one-
lasslearning with unlabeled data 
an be addressed by the algorithms developedin this paper. Re
all that these algorithms implement the 
luster assumptionunder 
onstraints on 
lass ratios. For one-
lass problems, unlabeled datais expe
ted to be helpful in biasing the 
lassi�
ation hyperplane to passthrough a low density region keeping 
lusters of the relevant 
lass on oneside and instan
es of the \others" 
lass on the other side.A novel 
lass of linear 
lustering algorithms may arise by adapting ouralgorithms for the extreme 
ase where no labels are available. At the otherextreme of fully supervised learning, one may utilize MFA ideas for opti-mizing non-
onvex loss fun
tions 
loser to the miss
lassi�
ation (zero-one)loss (as 
ompared to e.g the hinge loss), yielding algorithms with possi-bly superior generalization performan
e and better sparsity properties. See[7℄ for some re
ent work on regularization algorithms with non-
onvex lossfun
tions.Referen
es[1℄ K. Bennett and A. Demirez (1998),Semi-Supervised Support Ve
tor Ma-
hines NIPS 1998[2℄ D.Bertsekas ,Nonlinear Programming, Athena S
ienti�
, 1995, (2ndEdition, 1999),[3℄ G Bilbro, R Mann, TK Miller, WE Snyder, DE Van den, Optimizationby Mean Field Annealing, NIPS 1989
30
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ategorization In Pro
eed-ings of ACM-CIKM98, Nov. 1998, pp. 148-155.[6℄ O. Chapelle & A. Zien, Semi-Supervised Classi�
ation by Low DensitySeparation, AI & Statisti
s[7℄ R. Collobert, J. Weston, and L. Bottou,Trading Convexity for S
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hines, ICML 1999. http://joa
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Table 1: L2-SVM-MFNProblem Given l labeled examples fxi; yigli=1 where xi 2 Rd ; yi 2 f�1;+1g and a
ost for ea
h example f
igli=1, Solve:w? = argminw2Rd 12 lXi=1 
imax �0; 1� yi (wTxi)�2 + �2 kwk2De�ne X = [x1 : : : xl℄T 2 Rl�d ; Y = [y1 : : : yl℄T 2 Rl�1C 2 Rl�l : a diagonal matrix with Cii = 
iw 2 Rd : (a guess for the solution)If a guess is available, it is also 
onvenient to pass:o = Xw | = fi : yioi < 1g |
 = fi : i 2 |gInputs X;Y;C; � and w; o; |; |
 (if available)Initialize if w; o unavailable (or set as zero ve
tors) set w = 0 2 Rd ; o = 0 2Rl ; � = 10�2; 
gitermax = 10; | = 1 : : : l; |
 = �if w; o; |; |
 are available, set � = 10�6; 
gitermax = 10000� = 10�6 iter = 0 itermax = 50Iterate while (iter < itermax)iter=iter+1( �w; �o|; opt) = CGLS(X|; Y|; C|; w; o|; �; 
gitermax) (see table 2)�o|
 = X|
 �wIf 
gitermax=10 reset 
gitermax = 10000if (opt = 1;8 i 2 | yi�oi � 1 + � ; 8 i 2 |
 yi�oi � 1� �)If � = 10�2 reset � = 10�6 and
ontinue the while loop iterations.Else set w = �w o = �oand exit the while loop.end ifÆ = LINE-SEARCH(w; �w; o; �o; Y; C) (see table 3)w = w + Æ( �w � w)o = o+ Æ(�o � o)| = fi 2 1 : : : l : yioi < 1g |
 = fi 2 1 : : : l : i =2 |gend whileOutputs w; o; |; |
 33



Table 2: CGLSProblem Given l labeled examples fxi; yigli=1 where xi 2 Rd ; yi 2 f�1;+1gand a 
ost for ea
h example f
igli=1, Solve:�? = argmin�2Rd 12 lXi=1 
i �yi � �Txi�2 + �2 k�k2Equivalently Solve: ��I +XTCX��? = XTCYDe�ne X = [x1 : : : xl℄T 2 Rl�d ; Y = [y1 : : : yl℄T 2 Rl�1C 2 Rl�l : a diagonal matrix with Cii = 
i� 2 Rd : a guess for the solution (set � = 0 2 Rd if unavailable)o = X�Inputs X;Y;C; �; �; o; �; 
gitermaxInitialization z = C(Y � o) r = XT z � �� p = r !1 = krk2
giter = 0 optimality = 0Iterate while (
giter < 
gitermax)
giter=
giter + 1q = Xp
 = !1�kpk2+qTCq� = � + 
po = o+ 
qz = z � 
Cq!2 = !1r = XT z � ��!1 = krk2if (!1 < �2kzk2)Set optimality = 1 and Exit while loop.end if! = !1!2p = r + !pend whileOutputs �; o; optimality
34



Table 3: LINE-SEARCHInputs w; �w; o; �o; Y; C as de�ned in Table 1Initialize | = fi : yioi < 1gL = �wT ( �w � w) +Pi2|Cii(oi � yi)(�oi � oi)R = � �wT ( �w � w) +Pi2|Cii(�oi � yi)(�oi � oi)De�ne Æi = (yi�oi)�oi�oi for all i�1 = fÆi : i 2 |; yi(�oi � oi) > 0g�2 = fÆi : i =2 |; yi(�oi � oi) < 0g� = �1 [�2j = 0Reorder indi
es so that Æi 2 � are sorted in non-de
reasingorder Æi1 ; Æi2 : : :.Iterate for j = 1; 2 : : :Æ0 = L+ Æij (R� L)if (Æ0 � 0)Exit for loopend ifSet s = �1 if Æij 2 �1 or s = 1 if Æij 2 �2L = L+ sCijij (oij � yij )(�oij � oij )R = R+ sCijij (�oij � yij )(�oij � oij )end forOutput Æ? = �LR�L
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Table 4: Algorithm: Transdu
tive L2-SVM-MFN Solves Eqn. 7Problem Given l labeled examples fxi; yigli=1 where xi 2 Rd ; yi 2 f�1;+1g andu unlabeled examples fxj 0guj=1, Solve problem in Eqn. 7.De�ne X = [x1 : : : xl℄T 2 Rl�d Y = [y1 : : : yl℄T 2 Rl�1X 0 = [x01 : : : x0u℄T 2 Rl�uo = Xw o0 = X 0wInputs X, Y , X 0, �; �0r, S (maximum number of label pairs to swit
h, default S=1)Initialization C 2 Rl�l : a diagonal matrix with Cii = 1lR=2w0= L2-SVM-MFN(X;Y;C)Compute o0 = X 0w0. Assign positive and negative labels to theunlabeled data in the ratio r : (1� r) respe
tively by thresholding o0.Put these labels in a ve
tor Y 0.Set �̂0 = 10�5 De�ne: X̂ = � XX 0 � Ŷ = � YY 0 �De�ne Ĉ 2 R(l+u)�(l+u) : a diagonal matrix with:Ĉii = 1l (1 � i � l) Ĉii = �̂0u (l + 1 � i � l + u)Set w = 0 2 Rd o = 0 2 Rl o0 2 Ru | = 1 : : : (l + u) |
 = �Iterate (Loop 1) while �̂0 < �0Re-training 1 (w; [o o0℄; |; |
)= L2-SVM-MFN(X̂; Ŷ ; Ĉ; w; [o o0℄; |; |
)Iterate (Loop 2) while (9 s index pairs (ik; jk)sk=1 : 1 � ik; jk � u with s � Ssu
h that: Y 0ik = +1; Y 0jk = �1; o0ik < 1; �o0jk < 1; o0ik < o0jk )Swit
h Labels Y 0ik = �1 Y 0jk = +1 for k = 1; 2 : : : sŶ = � YY 0 �Re-training 2 (w; [o o0℄; |; |
)= L2-SVM-MFN(X̂; Ŷ ; Ĉ; w; [o o0℄; |; |
)end while (loop 2)In
rease �̂0 �̂0 = R�̂0Ĉii = 1l (1 � i � l) Ĉii = �̂0u (l + 1 � i � l + u)end while (loop 1)Output w
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Table 5: Algorithm: Mean Field Annealing L2-SVM-MFN. SolvesEqn. 10,8,9Problem Given l labeled examples fxi; yigli=1 where xi 2 Rd ; yi 2 f�1;+1g andu unlabeled examples fx0jguj=1, Solve for w? in Eqns 10,8,9.De�ne X = [x1 : : : xl℄T 2 Rl�d Y = [y1 : : : yl℄T 2 Rl�1X 0 = [x01 : : : x0u℄T 2 Rl�uInputs X, Y , X 0, �, �0, rInitialization T = 10 R = 1:5 � = 10�6iter1=0 itermax1 = 30 itermax = 100~X = [XT X 0T ℄Tp = [r : : : r℄T 2 Ruh = H(p) (Eqn. 16)(w; [o o0℄; |l; |1; |2) = optimize-w(X;Y; p; �; �0) (Table 7)F = J(w) (Eqn. 18)Fmin = F wmin = w o0min = o0Loop 1 while (iter1 < itermax1) AND (h > �)iter1 = iter1 + 1 iter2 = 0kl=1Loop 2 while (iter2 < itermax2) AND (kl > �)iter2 = iter2 +1q = pp = optimize-p(o0; �0; T; r) (Table 6)(w; [o o0℄; |l; |1; |2) =optimize-w(X;Y; p; �; �0; w; [o o0℄; |l; |1; |2) (Table 7)kl = KL(p; q) (Eqn. 16)F = J(w) (Eqn. 18)if F < FminFmin = F wmin = w o0min = o0end ifend while (loop 2)h = H(p)T = T=Rend while (loop 1)Output wmin
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Table 6: optimize-p Subroutine for mean �eld annealing to optimizing p.See Table 5Inputs o0; �0; T; rCompute g = [g1 : : : gu℄where gj = �0�max h0; 1 � o0ji2 �max h0; 1 + o0ji2�Initialize � = 10�10 iter = 0 maxiter = 500�� = min(g1 : : : gu)� T log 1�rr�+ = max(g1 : : : gu)� T log 1�rr� = (�+ + ��)=2 Initial guesss = [e� (g1��)T : : : : : : e� (gu��)T ℄B(�) = 1u Pui=1 11+si � rB0(�) = 1Tu Pui=1 si(1+si)2 (if si !1, i.e larger than some upperlimit, set 
orresponding term to 0)Iterate while (jB(�)j > �) AND (iter < maxiter)iter=iter+1if jB0(�)j > 0�̂ = � � B(�)B0(�)end ifif (�̂ < ��) OR (�̂ > �+) OR B0(�) = 0Bise
tion � = ��+�+2elseNewton-Raphson � = �̂end ifUpdate s = [e� (g1��)T : : : : : : e� (gu��)T ℄B(�) = 1u Pui=1 11+si � rB0(�) = 1Tu Pui=1 si(1+si)2 (if si ! 1, i.e larger than someupper limit, set 
orresponding term to 0)if B(�) < 0 set �� = � else �+ = �if j�+ � ��j < � exit while loopend whileOutput p = [ 11+s1 : : : 11+su ℄
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Table 7: optimize-w (spe
ialized L2-SVM-MFN routine for mean �eld an-nealing. See Table 5Inputs ~X;Y; p; �; �0 and w; [o o0℄; |l; |1; |2 (if available)Initialize if w unavailable (or set as zero ve
tors) set w = 0 2 Rd ; [o o0℄ =0 2 Rl+u ; � = 10�2; 
gitermax = 10; |l = 1 : : : l; |2 =1 : : : u; |1 = |
l = �if w; [o o0℄; |l; |1; |2 are available, set � = 10�6; 
gitermax =10000; |
l = fi 2 1 : : : l : i =2 |lg� = 10�8 iter = 0 itermax = 50Set Ŷ ; C a

ording to Eqn. 11Set ~Y ; ~C a

ording to Eqn. 14Iterate while (iter < itermax)iter=iter+1De�ne the a
tive index set: | = |lSfjgl+uj=l+1( �w; [�o|l �o0℄; opt) = CGLS�X|; ~Y|; C|; w; [o|l �o0℄; �; 
gitermax��o|
l = X|
l �wif 
gitermax=10 reset 
gitermax = 10000if opt = 1; 8 i 2 |l yi�oi � 1 + � ; 8 i 2 |
l yi�oi � 1� �8 j 2 |l jo0j j >= 1� � 8 j 2 |2 jo0j j < 1 + �If � = 10�2 reset � = 10�6 and
ontinue the while loop iterations.Else set w = �w o = �oand exit the while loop.end ifÆ = LINE-SEARCH�w; �w; [o o0 o0℄; [�o �o0 �o0℄; Ŷ ; C�w = w + Æ( �w � w)o = o+ Æ(�o � o) o0 = o0 + Æ(�o0 � o0)| = fi : yioi < 1g |
l = fi : i =2 |lg|1 = fj 2 1 : : : u : jo0j j >= 1g |2 = fj 2 1 : : : u : jo0j j < 1gRe
ompute ~Y ; ~C a

ording to Eqn. 14end whileOutput w; [o o0℄; |l; |1; |2 39


