Fast (fully supervised) Linear SVMs The cluster assumption for SSL Semi-supervised SVMs Empirical Studies Extensions

Large Scale Semi-supervised Linear SVMs

Vikas Sindhwani and Sathiya Keerthi

University of Chicago

SIGIR 2006

Semi-supervised Learning (SSL)

Motivation

- Categorize x-billion documents into commercial/non-commercial.
- Traditional machine learning algorithms require labels.
- Labels are expensive/impossible to get.
- But tons of unlabeled data !

Setting

Linear SVMs (S³VM) for large-scale problems – large number of examples and features – highly sparse – few labels and lots of unlabeled data.

Semi-supervised Learning (SSL)

Motivation

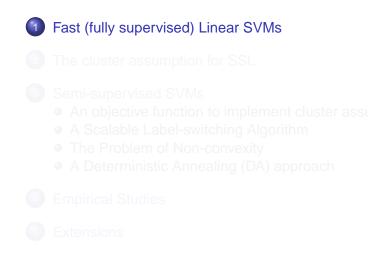
- Categorize x-billion documents into commercial/non-commercial.
- Traditional machine learning algorithms require labels.
- Labels are expensive/impossible to get.
- But tons of unlabeled data !

Setting

Linear SVMs ($S^{3}VM$) for large-scale problems – large number of examples and features – highly sparse – few labels and lots of unlabeled data.

<ロ> (四) (四) (三) (三) (三) (三)

Outline



- Fast (fully supervised) Linear SVMs
- 2 The cluster assumption for SSL
 - Semi-supervised SVMs
 - An objective function to implement cluster assumption

・ コット (雪) ・ (目) ・ (目)

- A Scalable Label-switching Algorithm
- The Problem of Non-convexity
- A Deterministic Annealing (DA) approach
- Empirical Studies
- 5 Extensions

- Fast (fully supervised) Linear SVMs
- 2 The cluster assumption for SSL

3 Semi-supervised SVMs

- An objective function to implement cluster assumption
- A Scalable Label-switching Algorithm
- The Problem of Non-convexity
- A Deterministic Annealing (DA) approach
- Empirical Studies

- Fast (fully supervised) Linear SVMs
- 2 The cluster assumption for SSL
- 3 Semi-supervised SVMs
 - An objective function to implement cluster assumption
 - A Scalable Label-switching Algorithm
 - The Problem of Non-convexity
 - A Deterministic Annealing (DA) approach
- Empirical Studies

- Fast (fully supervised) Linear SVMs
- 2 The cluster assumption for SSL
- 3 Semi-supervised SVMs
 - An objective function to implement cluster assumption
 - A Scalable Label-switching Algorithm
 - The Problem of Non-convexity
 - A Deterministic Annealing (DA) approach
- Empirical Studies

- Fast (fully supervised) Linear SVMs
- 2 The cluster assumption for SSL

3 Semi-supervised SVMs

- An objective function to implement cluster assumption
- A Scalable Label-switching Algorithm
- The Problem of Non-convexity
- A Deterministic Annealing (DA) approach

Empirical Studies

- Fast (fully supervised) Linear SVMs
- 2 The cluster assumption for SSL

3 Semi-supervised SVMs

An objective function to implement cluster assumption

- A Scalable Label-switching Algorithm
- The Problem of Non-convexity
- A Deterministic Annealing (DA) approach

Empirical Studies

- Fast (fully supervised) Linear SVMs
- 2 The cluster assumption for SSL

3 Semi-supervised SVMs

- An objective function to implement cluster assumption
- A Scalable Label-switching Algorithm
- The Problem of Non-convexity
- A Deterministic Annealing (DA) approach
- 4 Empirical Studies

- Fast (fully supervised) Linear SVMs
- 2 The cluster assumption for SSL

3 Semi-supervised SVMs

An objective function to implement cluster assumption

- A Scalable Label-switching Algorithm
- The Problem of Non-convexity
- A Deterministic Annealing (DA) approach
- 4 Empirical Studies

Fast (fully supervised) Linear SVMs

- 2 The cluster assumption for SSL
- 3 Semi-supervised SVMs
 - An objective function to implement cluster assumption
 - A Scalable Label-switching Algorithm
 - The Problem of Non-convexity
 - A Deterministic Annealing (DA) approach
- 4 Empirical Studies

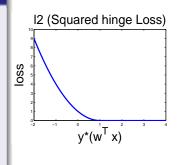
Fast Linear (I₂)-SVMs [Keerthi & Decoste, 2005]

Given $\{x_i \in \mathbb{R}^d, y_i = \pm 1\}_{i=1}^l$, data matrix X $(l \times d)$ is sparse.

Optimization

$$\min_{\boldsymbol{w}\in\mathbb{R}^d} \frac{\lambda}{2} \|\boldsymbol{w}\|^2 + \sum_{i=1}^l l_2\left(\boldsymbol{y}_i, \boldsymbol{w}^T\boldsymbol{x}_i\right)$$

- continuously differentiable, whereas standard *l*₁ loss is not differentiable.
- Primal, unconstrained, direct w optimization, whereas LIBSVM/SVM-light are dual methods.
- Only *X* × vec operations, whereas dual methods deal with dense gram matrix.



(日) (日) (日) (日) (日) (日) (日)

Fast Linear (I₂)-SVMs [Keerthi & Decoste,2005]

Algorithm

$$\min_{w\in\mathbb{R}^d} J(w) = \frac{\lambda}{2} \|w\|^2 + \sum_{i\in\mathcal{A}(w)} c_i \left(1 - y_i(w^T x_i)\right)^2$$

where
$$A(w) = \{i : y_i(w^T x_i) < 1\}$$

- Initialize w₀
- Iterate: k=0,1,2....
 - Regularized Least Squares:
 - $\bar{w} = \min_{w} \frac{\lambda}{2} \|w\|^2 + \sum_{i \in \mathcal{A}(w_k)} c_i \left(1 y_i(w^T x_i)\right)^2$
 - Set search direction $d = \bar{w} w_k$
 - Line Search: Solve $\delta^* = \min_{\delta} J(w_k + \delta d)$
 - Set new iterate: $w_{k+1} = w_k + \delta^* (\bar{w} w_k)$

Fast Linear (I₂)-SVMs [Keerthi & Decoste,2005]

Specialized Conjugate gradient (CGLS) to solve RLS

To get \bar{w} , Minimize:

$$\frac{1}{2}w^{T}[X^{T}CX + \lambda I]w - [X^{T}CY]w$$

where X: data matrix (rows are examples), C: diagonal cost matrix, Y label vector – only over $\mathcal{A}(w_k)$

- $|\mathcal{A}(w_k)|$ may be much smaller than I.
- Use w_k as the initial seed. Seeding very effective.
- Only operations involving X are matrix-vector products of the form Xp and X^Tz – can be done fast.

Typical Behaviour: Reuters CCAT

Finite convergence guaranteed.

804414 examples, 47256 features: #CGLS iterations (10,15,8,2 ; 28,19) -> 7 iterations, Total 80 seconds [3GHz,2GB]

・ロ ・ ・ 一 ・ ・ 日 ・ ・ 日 ・

3

Outline

Fast (fully supervised) Linear SVMs

2 The cluster assumption for SSL

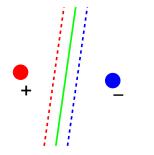
3 Semi-supervised SVMs

- An objective function to implement cluster assumption
- A Scalable Label-switching Algorithm
- The Problem of Non-convexity
- A Deterministic Annealing (DA) approach

The cluster assumption for SSL

Empirical Studies

Cluster Assumption

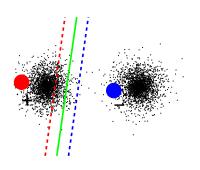


Assumptions

Two points in a cluster have same labels. Design Principle: Drive the classification hyperplane away from the data – while respecting labels. Decisions should not change within a cluster.

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □

Cluster Assumption

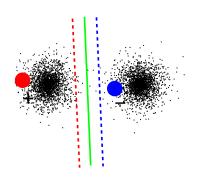


Assumptions

Two points in a cluster have same labels. Design Principle: Drive the classification hyperplane away from the data – while respecting labels. Decisions should not change within a cluster.

• □ > • (□) • • □ > • □ >

Cluster Assumption

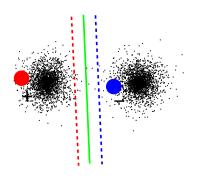


Assumptions

Two points in a cluster have same labels. Design Principle: Drive the classification hyperplane away from the data – while respecting labels. Decisions should not change within a cluster.

・ロット (雪) (日) (日)

Cluster Assumption



Assumptions

Two points in a cluster have same labels. Design Principle: Drive the classification hyperplane away from the data – while respecting labels. Decisions should not change within a cluster.

(日)

- 1 Fast (fully supervised) Linear SVMs
- 2 The cluster assumption for SSL

3 Semi-supervised SVMs

An objective function to implement cluster assumption

・ロ ・ ・ 一 ・ ・ 日 ・ ・ 日 ・

3

- A Scalable Label-switching Algorithm
- The Problem of Non-convexity
- A Deterministic Annealing (DA) approach
- Empirical Studies

Fast (fully supervised) Linear SVMs The cluster assumption for SSL Semi-supervised SVMs Empirical Studies Extensions

An objective function to implement cluster assumption

Vapnik's idea

Given *I* labeled examples $\{x_i, y_i\}_{i=1}^{l}$, *u* unlabeled examples x'_i .

Train an SVM while optimizing unknown labels

Solve for weights *w* and unknown labels $\mathbf{y}' \in \{-1, +1\}^u$,

$$\min_{w,y'} \quad \underbrace{\frac{\lambda}{2} \|w\|^2}_{\text{labeled loss}} + \underbrace{\frac{1}{l} \sum_{i=1}^{l} l_2(y_i, w^T \mathbf{x}_i)}_{\text{labeled loss}} + \underbrace{\frac{\lambda'}{u} \sum_{j=1}^{u} l_2(y'_j, w^T \mathbf{x}'_j)}_{\text{unlabeled loss}}$$
subject to:
$$\frac{1}{u} \sum_{j=1}^{u} \max(0, y'_j) = r \quad \text{(positive class ratio)}$$

An objective function to implement cluster assumption

Equivalent Problem

Optimization Problem

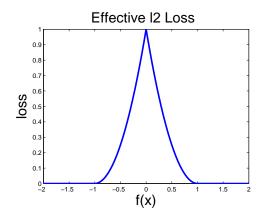
$$\min_{w,\mathbf{y}'} J(w,\mathbf{y}') = \frac{\lambda}{2} ||w||^2 + \frac{1}{I} \sum_{i=1}^{I} l_2(y_i, o_i) + \frac{\lambda'}{u} \sum_{j=1}^{u} l_2(\mathbf{y}'_j, o'_j)$$

$$\min_{w} J(w) = \frac{\lambda}{2} ||w||^{2} + \frac{1}{l} \sum_{i=1}^{l} l_{2}(y_{i}, o_{i}) + \frac{\lambda'}{u} \sum_{j=1}^{u} \underbrace{\min\left[l_{2}\left(+, o_{j}'\right), l_{2}\left(-, o_{j}'\right)\right]}_{\text{effective loss } l_{2}'(o_{j}')}$$

Semi-supervised SVMs Empirical Studies Extensions

An objective function to implement cluster assumption

Effective Loss Function Over Unlabeled Examples



- Non-convex
- Penalty if decision surface gets too close to unlabeled examples.

Semi-supervised SVMs Empirical Studies Extensions

A Scalable Label-switching Algorithm

Fast TSVMs

SVM-Light Implementation

- Train an SVM on labeled data.
- Initialize y' by labeling unlabeled data (fraction r positive).
- Iterate:
 - Optimize w keeping y' fi xed Train SVM using SVM-Light with y' as labels of unlabeled data.
 - Optimize **y**' keeping *w* fi xed Switch a pair of labels so that objective function *strictly* decreases.

Semi-supervised SVMs Empirical Studies Extensions

A Scalable Label-switching Algorithm

Fast TSVMs

Our Implementation

- Train an SVM on labeled data.
- Initialize y' by labeling unlabeled data (fraction r positive).
- Iterate:
 - Optimize w keeping y' fi xed Train SVM using Fast I₂-SVM with y' as labels of unlabeled data. Seed previous w.
 - Optimize **y**' keeping *w* fi xed Switch a pair of labels so that objective function *strictly* decreases.

A Scalable Label-switching Algorithm

Fast TSVMs

Our Implementation

- Train an SVM on labeled data.
- Initialize y' by labeling unlabeled data (fraction r positive).
- Iterate:
 - Optimize w keeping y' fi xed Train SVM using Fast I₂-SVM with y' as labels of unlabeled data. Seed previous w.
 - Optimize y' keeping w fi xed Switch multiple pairs of labels so that objective function strictly decreases.

A Scalable Label-switching Algorithm

Fast TSVMs

Our Implementation

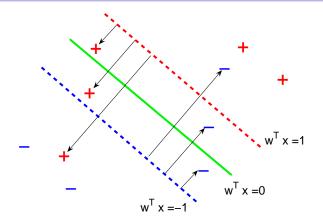
- Train an SVM on labeled data.
- Initialize y' by labeling unlabeled data (fraction r positive).
- Iterate:
 - Optimize w keeping y' fi xed Train SVM using Fast I₂-SVM with y' as labels of unlabeled data. Seed previous w.
 - Optimize y' keeping w fi xed Switch multiple pairs of labels so that objective function strictly decreases.

Question: Termination guaranteed – but how many switches and how efficient will it be to retrain so many times ?

Semi-supervised SVMs Empirical Studies Extensions

A Scalable Label-switching Algorithm

Label Switching

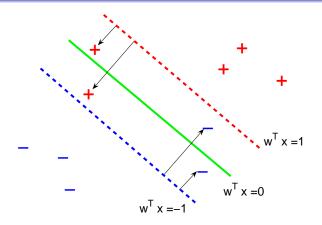


Sort (currently) + examples by margin error.
 Sort (currently)
 examples by margin error.
 Switch S pairs or until sum of margin errors falls below 2.

Semi-supervised SVMs Empirical Studies Extensions

A Scalable Label-switching Algorithm

Label Switching

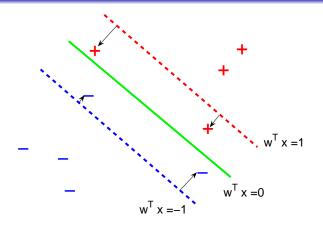


Sort (currently) + examples by margin error.
 Sort (currently)
 examples by margin error.
 Switch S pairs or until sum of margin errors falls below 2.

Semi-supervised SVMs Empirical Studies Extensions

A Scalable Label-switching Algorithm

Label Switching

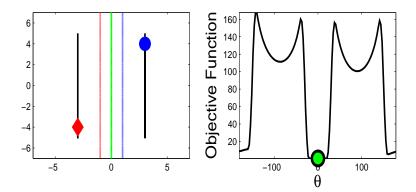


Sort (currently) + examples by margin error.
 Sort (currently)
 examples by margin error.
 Switch S pairs or until sum of margin errors falls below 2.

Semi-supervised SVMs Empirical Studies Extensions

The Problem of Non-convexity

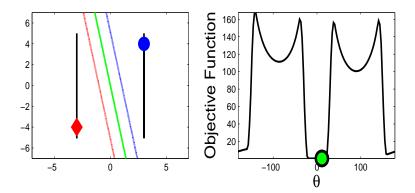
Non-convexity can hurt empirical performance



Semi-supervised SVMs Empirical Studies Extensions

The Problem of Non-convexity

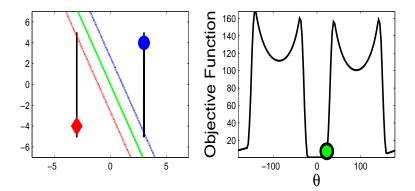
Non-convexity can hurt empirical performance



Semi-supervised SVMs Empirical Studies Extensions

The Problem of Non-convexity

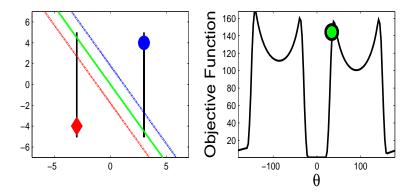
Non-convexity can hurt empirical performance



Semi-supervised SVMs Empirical Studies Extensions

The Problem of Non-convexity

Non-convexity can hurt empirical performance



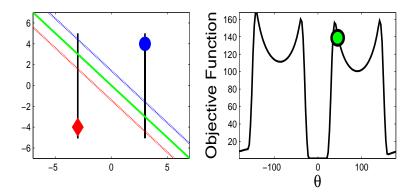
▲□▶▲圖▶▲≣▶▲≣▶ ≣ の��

Fast (fully supervised) Linear SVMs The cluster assumption for SSL

Semi-supervised SVMs Empirical Studies Extensions

The Problem of Non-convexity

Non-convexity can hurt empirical performance

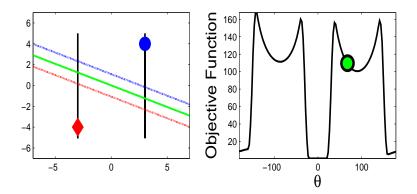


 Fast (fully supervised) Linear SVMs The cluster assumption for SSL Se

Semi-supervised SVMs Empirical Studies Extensions

The Problem of Non-convexity

Non-convexity can hurt empirical performance

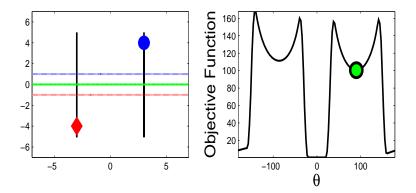


 Fast (fully supervised) Linear SVMs The cluster assumption for SSL S

Semi-supervised SVMs Empirical Studies Extensions

The Problem of Non-convexity

Non-convexity can hurt empirical performance



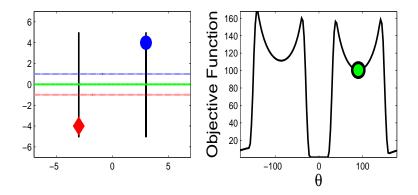
▲□▶▲圖▶▲≣▶▲≣▶ ≣ のQ@

Fast (fully supervised) Linear SVMs The cluster assumption for SSL Semi-supervised SVMs Empi

Empirical Studies Extensions

The Problem of Non-convexity

Non-convexity can hurt empirical performance



Error rates on COIL6: SVM 21.9, TSVM 21.2, ∇ TSVM 21.6

◆ロ▶ ◆母▶ ◆ヨ▶ ◆ヨ ◆ 句々ぐ

Fast (fully supervised) Linear SVMs The cluster assumption for SSL Semi-supervised SVMs Empirical Studies Extensions

・ロト・日本・日本・日本・日本

The Problem of Non-convexity

Handling Local Minima

- Start with an easy (unimodal) objective function and gradually increase non-convexity.
- Work with a family of objective functions; parameterically track minimizers.
- J_{\lambda'} is insensitive to outside unlabeled data.

The Problem of Non-convexity

Handling Local Minima

- Start with an easy (unimodal) objective function and gradually increase non-convexity.
- Work with a family of objective functions; parameterically track minimizers.
- J_{\lambda'} is insensitive to outside unlabeled data.

$$J_{\lambda'}(w, \mathbf{y}') = \frac{\lambda_2}{2} \|w\|^2 + \frac{1}{7} \sum_{i=1}^{I} I_2(y_i, o_i) + \frac{\lambda'}{u} \sum_{j=1}^{u} I_2(y'_j, o'_j)$$

Effective loss

・ロト・「聞・・「問・・「問・・」 しゃくの

The Problem of Non-convexity

Handling Local Minima

- Start with an easy (unimodal) objective function and gradually increase non-convexity.
- Work with a family of objective functions; parameterically track minimizers.
- *J*_{\lambda'} is insensitive to outside unlabeled data.

$$J_{\lambda'}(w, \mathbf{y}') =$$

$$\frac{\lambda}{2} ||w||^{2} + \frac{1}{7} \sum_{i=1}^{l} l_{2}(y_{i}, o_{i}) +$$

$$\frac{\lambda'}{u} \sum_{j=1}^{u} l_{2}(y'_{j}, o'_{j})$$
Effective loss
$$\int_{0.6}^{0.9} \int_{0.6}^{0.6} \int_{0.6}^{$$

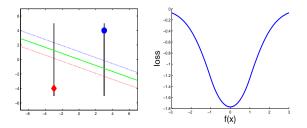
・ロト・「聞・・「問・・「問・・」 しゃくの

The Problem of Non-convexity

Deterministic Annealing: Intuition

Question

For the decision boundary to locally evolve in a desirable manner, what should the loss function look like ?



Key Idea

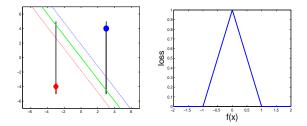
Deform the loss function (objective) as the optimization proceeds; use *outside* unlabeled data.

The Problem of Non-convexity

Deterministic Annealing: Intuition

Question

For the decision boundary to locally evolve in a desirable manner, what should the loss function look like ?



Key Idea

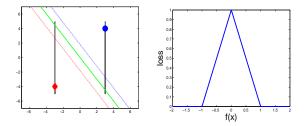
Deform the loss function (objective) as the optimization proceeds; use *outside* unlabeled data.

The Problem of Non-convexity

Deterministic Annealing: Intuition

Question

For the decision boundary to locally evolve in a desirable manner, what should the loss function look like ?



Key Idea

Deform the loss function (objective) as the optimization proceeds; use *outside* unlabeled data.

A Deterministic Annealing (DA) approach

Deterministic Annealing for Semi-supervised SVMs

Another Equivalent Continuous Optimization Problem

"Relax" \mathbf{y}' to $\mathbf{p} = (p_1 \dots p_u)$ where p_j is *like* the prob that $y'_j = 1$.

$$J(w, \mathbf{p}) = E_{\mathbf{p}}J(w, \mathbf{y}') = \frac{\lambda}{2} ||w||^2 + \frac{1}{I} \sum_{i=1}^{I} I_2(y_i, o_i) + \frac{\lambda'}{u} \sum_{j=1}^{u} \left[p_j I_2(+, o_j') + (1 - p_j) I_2(-, o_j') \right]$$

Family of Objective Functions: Avg Cost - T Entropy

$$J_T(w, \mathbf{p}) = E_{\mathbf{p}}J(w, \mathbf{y}') - \underbrace{T \ H(\mathbf{p})}_{-\frac{T}{u} \sum_{j=1}^{u} [p_j \log p_j + (1-p_j) \log (1-p_j)]}$$

A Deterministic Annealing (DA) approach

Deterministic Annealing: Some Quick Comments

Smoothing Interpretation

At high T, spurious & shallow local min are smoothed away.

Deterministic Variant of Simulated Annealing (SA)

SA is a stochastic search technique based on setting up a Markov process whose steady state distribution minimizes $E_{\mathbf{p}}J - TH(\mathbf{p})$. Probabilistic guarantee for global optimum as $T \rightarrow 0$ very slowly.

Proven Heuristic

No guarantees, but has a strong record of empirical success.

(日) (日) (日) (日) (日) (日) (日)

A Deterministic Annealing (DA) approach

Deterministic Annealing: Some Quick Comments

Smoothing Interpretation

At high T, spurious & shallow local min are smoothed away.

Deterministic Variant of Simulated Annealing (SA)

SA is a stochastic search technique based on setting up a Markov process whose steady state distribution minimizes $E_{\mathbf{p}}J - TH(\mathbf{p})$. Probabilistic guarantee for global optimum as $T \rightarrow 0$ very slowly.

Proven Heuristic

No guarantees, but has a strong record of empirical success.

A Deterministic Annealing (DA) approach

Deterministic Annealing: Some Quick Comments

Smoothing Interpretation

At high T, spurious & shallow local min are smoothed away.

Deterministic Variant of Simulated Annealing (SA)

SA is a stochastic search technique based on setting up a Markov process whose steady state distribution minimizes $E_{\mathbf{p}}J - TH(\mathbf{p})$. Probabilistic guarantee for global optimum as $T \rightarrow 0$ very slowly.

Proven Heuristic

No guarantees, but has a strong record of empirical success.

A Deterministic Annealing (DA) approach

Deterministic Annealing for Semi-supervised SVMs

Full Optimization problem at T

$$\min_{w,\mathbf{p}} J_{T}(w,\mathbf{p}) = \frac{\lambda}{2} \|w\|^{2} + \frac{1}{7} \sum_{i=1}^{l} I_{2}(y_{i},o_{i}) + \frac{\lambda'}{u} \sum_{j=1}^{u} \left[p_{j}I_{2}(+,o_{j}') + (1-p_{j})I_{2}(-,o_{j}') \right] + \frac{T}{u} \sum_{j=1}^{u} \left[p_{j} \log p_{j} + (1-p_{j}) \log p_{j} \right] \text{ s.t } (1/u) \sum_{j=1}^{u} p_{j} = r$$

Details

- Deformation: T controls non-convexity of J_T(w, p). At T = 0, reduces to the original non-convex objective function J(w, p).
- Optimization at $T(w_T^*, \mathbf{p}_T^*) = \operatorname{argmin}_{w, \mathbf{p}} J_T(w, \mathbf{p})$
- Annealing: Return: $w^* = \lim_{T \to 0} w_T^*$
- Balance constraint: $\frac{1}{u} \sum_{j=1}^{u} p_j = r$

Fast (fully supervised) Linear SVMs The cluster assumption for SSL

Semi-supervised SVMs Empirical Studies Extensions

A Deterministic Annealing (DA) approach

Alternating Convex Optimization

At any T, optimize w keeping **p** fixed

 Use Fast I₂-SVMs – two copies of unlabeled data but due to linearity, can reformulate CGLS to work on one.

At any T, optimize **p** keeping *w* fixed

•
$$p_j^{\star} = \frac{1}{1+e^{\frac{g_j-\nu}{T}}}$$
 $g_j = \lambda' \left[l_2(+, o_j') - l_2(-, o_j') \right]$

• Obtain
$$\nu$$
 by solving $\frac{1}{u} \sum_{j=1}^{u} \frac{1}{1+e^{\frac{g_j-\nu}{T}}} = r$

Stopping Conditions

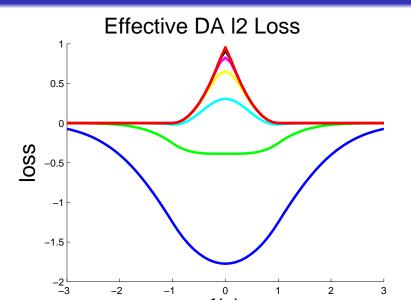
- At any T, alternate until KL(**p**_{new}|**p**_{old}) < ε. Obtain p^{*}_T.
- Reduce T, Seed old p_T^{\star} , until $H(\mathbf{p}_T^{\star}) < \epsilon$.

Fast (fully supervised) Linear SVMs The cluster assumption for SSL

Semi-supervised SVMs Empirical Studies Extensions

A Deterministic Annealing (DA) approach

DA Effective Loss wrt T



Outline

- 1 Fast (fully supervised) Linear SVMs
- 2 The cluster assumption for SSL
- 3 Semi-supervised SVMs
 - An objective function to implement cluster assumption

・ロ ・ ・ 一 ・ ・ 日 ・ ・ 日 ・

3

- A Scalable Label-switching Algorithm
- The Problem of Non-convexity
- A Deterministic Annealing (DA) approach

Empirical Studies

5 Extensions

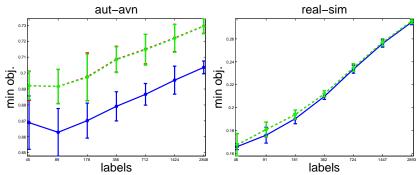
Experiments

Datasets

Dataset	#features	sparsity	#train	#test	r	Source
aut-avn	20707	51.32	35588	35587	0.65	Usenet
real-sim	20958	51.32	36155	36154	0.31	Usenet
ccat	47236	75.93	17332	5787	0.46	Reuters
gcat	47236	75.93	17332	5787	0.30	Reuters
33-36	59072	26.56	41346	41346	0.49	Yahoo!
pcmac	7511	54.58	1460	486	0.51	20NG
rcv1	47236	76.73	804414	-	0.18	Reuters

Quality of Optimization

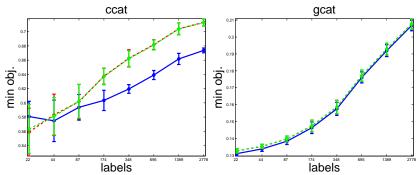
DA TSVM (1) TSVM (max)



- DA often gives significantly better minimizers [aut-avn,ccat,pcmac].
- Multiple switching TSVM no worse than single switching !

Quality of Optimization

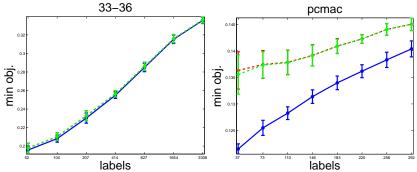
DA TSVM (1) TSVM (max)



- DA often gives significantly better minimizers [aut-avn,ccat,pcmac].
- Multiple switching TSVM no worse than single switching !

Quality of Optimization

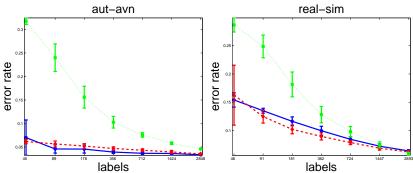
DA TSVM (1) TSVM (max)



- DA often gives significantly better minimizers [aut-avn,ccat,pcmac].
- Multiple switching TSVM no worse than single switching !

Generalization Performance

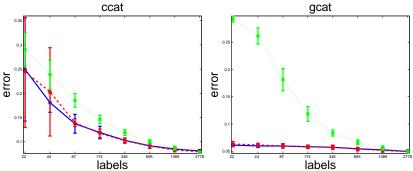
DA TSVM SVM



- Unlabeled data always very useful !
- TSVM's worse minimizers also generalize fairly well.
- Max-switching performs as well as single switching.

Generalization Performance

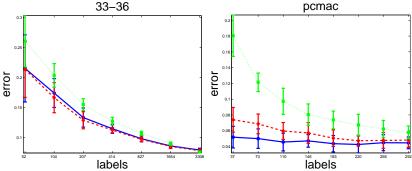
DA TSVM SVM



- Unlabeled data always very useful !
- TSVM's worse minimizers also generalize fairly well.
- Max-switching performs as well as single switching.

Generalization Performance

DA TSVM SVM



- Unlabeled data always very useful !
- TSVM's worse minimizers also generalize fairly well.
- Max-switching performs as well as single switching.

Speed comparison with SVM-Light

CPU Time [On a split with fewest labels]

Dataset	SVM ^{light}	TSVM(1)	TSVM(max)	DA
aut-avn	> 1 day	1.6hrs	7min	24min
real-sim	> 1 day	1.7hrs	6min	19min
ccat	4hrs	40min	6.5min	20min
gcat	> 1 day	20min	6min	3min
33-36	14hrs	2hrs	5min	7min
pcmac	167sec	4sec	2sec	12sec

- Massive speedups over SVM-Light
- TSVM(1) < DA < TSVM (max)
- Implemented in Matlab, C much faster. Easily parallelizable.

Larger-Scale Experiment

Reuters C15: 804414 examples, 47256 features (r=0.18)

PRBEP	l=100	l=1000
SVM	74.59	84.79
TSVM	77.73	86.60
DA	78.11	85.79
Obj.Value		
TSVM	0.094673	0.127172
DA	0.08073	0.12194
CPU Time		
TSVM	1hr 22min	40min
(switches)	(27670)	(8506)
DA	2hr 8min	1hr 6min

Summary of Experimental Results

- Unlabeled data is very useful.
- DA better optimizer than TSVM.
- Both compete well in terms of generalization.
- Local minima issues less severe on text than on other domains.
- Massive speedups over SVM-Light. Max-switching TSVM is fastest, DA comparable.

Outline

- Fast (fully supervised) Linear SVMs
- 2 The cluster assumption for SSL
- 3 Semi-supervised SVMs
 - An objective function to implement cluster assumption

・ロ ・ ・ 一 ・ ・ 日 ・ ・ 日 ・

3

- A Scalable Label-switching Algorithm
- The Problem of Non-convexity
- A Deterministic Annealing (DA) approach
- 4 Empirical Studies

Extensions

- Handing uncertain class ratios.
- Better annealing sequence for DA.
- Fast I₂-SVMs can be used to implement other SSL assumptions: Manifold (Laplacian SVM) and Co-training (Co-regularization).
- Software implementation available: SVM_{lin}: Fast Linear SVM Solvers for Supervised and Semi-supervised Learning, http://www.cs.uchicago.edu/~vikass/svmlin.html