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Semi-supervised Learning (SSL)

Motivation

Categorize x-billion documents into
commercial/non-commercial.

Traditional machine learning algorithms require labels.

Labels are expensive/impossible to get.

But tons of unlabeled data !

Setting

Linear SVMs (S3VM) for large-scale problems – large number
of examples and features – highly sparse – few labels and lots
of unlabeled data.
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Fast Linear (l2)-SVMs [Keerthi & Decoste,2005]

Given {xi ∈ R
d , yi = ±1}l

i=1, data matrix X
(l × d) is sparse.

Optimization

min
w∈Rd

λ

2
‖w‖2 +

l∑

i=1

l2
(

yi , wT xi

)

continuously differentiable, whereas
standard l1 loss is not differentiable.

Primal, unconstrained, direct w
optimization, whereas
LIBSVM/SVM-light are dual methods.

Only X × vec operations, whereas dual
methods deal with dense gram matrix.
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l2 (Squared hinge Loss)
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Fast Linear (l2)-SVMs [Keerthi & Decoste,2005]

Algorithm

min
w∈Rd

J(w) =
λ

2
‖w‖2 +

∑

i∈A(w)

ci

(

1 − yi(w
T xi)

)2

where A(w) = {i : yi(wT xi) < 1}

Initialize w0

Iterate: k=0,1,2....
Regularized Least Squares:
w̄ = minw

λ

2 ‖w‖2 +
∑

i∈A(wk ) ci
(
1 − yi(wT xi)

)2

Set search direction d = w̄ − wk

Line Search: Solve δ? = minδ J(wk + δd)
Set new iterate: wk+1 = wk + δ?(w̄ − wk )
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Fast Linear (l2)-SVMs [Keerthi & Decoste,2005]

Specialized Conjugate gradient (CGLS) to solve RLS

To get w̄ , Minimize:
1
2wT [X T CX + λI]w − [X T CY ]w

where X : data matrix (rows are examples), C: diagonal cost
matrix, Y label vector – only over A(wk )

|A(wk )| may be much smaller than l .

Use wk as the initial seed. Seeding very effective.

Only operations involving X are matrix-vector products of
the form Xp and X T z – can be done fast.

Typical Behaviour: Reuters CCAT

Finite convergence guaranteed.
804414 examples, 47256 features: #CGLS iterations (10,15,8,2
; 28,19) –> 7 iterations, Total 80 seconds [3GHz,2GB]
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Cluster Assumption

+ −

Assumptions

Two points in a cluster have
same labels.
Design Principle: Drive the
classification hyperplane
away from the data – while
respecting labels. Decisions
should not change within a
cluster.
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An objective function to implement cluster assumption

Vapnik’s idea

Given l labeled examples {xi , yi}
l
i=1, u unlabeled examples x ′

j .

Train an SVM while optimizing unknown labels

Solve for weights w and unknown labels y′ ∈ {−1, +1}u,

min
w ,y′

standard SVM
︷ ︸︸ ︷

λ

2
‖w‖2 +

1
l

l∑

i=1

l2
(

yi , wT xi)
)

︸ ︷︷ ︸

labeled loss

+
λ′

u

u∑

j=1

l2
(

y ′
j , wT x′

j)
)

︸ ︷︷ ︸

unlabeled loss

subject to:
1
u

u∑

j=1

max(0, y ′
j ) = r (positive class ratio)
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An objective function to implement cluster assumption

Equivalent Problem

Optimization Problem

min
w ,y′

J(w , y′) =
λ

2
‖w‖2 +

1
l

l∑

i=1

l2 (yi , oi) +
λ′

u

u∑

j=1

l2
(

y ′
j , o′

j

)

min
w

J(w) =
λ

2
‖w‖2 +

1
l

l∑

i=1

l2 (yi , oi) +

λ′

u

u∑

j=1

min
[

l2
(

+, o′
j

)

, l2
(

−, o′
j

)]

︸ ︷︷ ︸

effective loss l ′2(o
′

j )
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An objective function to implement cluster assumption

Effective Loss Function Over Unlabeled Examples
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Non-convex

Penalty if
decision
surface gets too
close to
unlabeled
examples.
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A Scalable Label-switching Algorithm

Fast TSVMs

SVM-Light Implementation

Train an SVM on labeled data.

Initialize y′ by labeling unlabeled data (fraction r positive).
Iterate:

Optimize w keeping y′ fixed
Train SVM using SVM-Light with y′ as labels of unlabeled
data.
Optimize y′ keeping w fixed
Switch a pair of labels so that objective function strictly
decreases.
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A Scalable Label-switching Algorithm

Fast TSVMs

Our Implementation

Train an SVM on labeled data.

Initialize y′ by labeling unlabeled data (fraction r positive).
Iterate:

Optimize w keeping y′ fixed
Train SVM using Fast l2-SVM with y′ as labels of unlabeled
data. Seed previous w .
Optimize y′ keeping w fixed
Switch multiple pairs of labels so that objective function
strictly decreases.

Question: Termination guaranteed – but how many switches
and how efficient will it be to retrain so many times ?
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A Scalable Label-switching Algorithm

Label Switching

wT x =0
wT x =−1

wT x =1

++

+

−

−
−

−

+

+

−

• Sort (currently) + examples by margin error. • Sort (currently)
− examples by margin error. • Switch S pairs or until sum of
margin errors falls below 2.
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The Problem of Non-convexity

Non-convexity can hurt empirical performance
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The Problem of Non-convexity

Non-convexity can hurt empirical performance

−5 0 5

−6

−4

−2

0

2

4

6

−100 0 100

20

40

60

80

100

120

140

160

O
b
je

c
ti
v
e
 F

u
n
c
ti
o
n

θ

Error rates on COIL6: SVM 21.9, TSVM 21.2, ∇ TSVM 21.6
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The Problem of Non-convexity

Handling Local Minima

Start with an easy
(unimodal) objective
function and gradually
increase non-convexity.

Work with a family of
objective functions;
parameterically track
minimizers.

Jλ′ is insensitive to
outside unlabeled data.
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λ
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j=1 l2
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j

)

−3 −2 −1 0 1 2 3
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
 Effective loss

f(x)

lo
ss

Increasing λ’



Fast (fully supervised) Linear SVMs The cluster assumption for SSL Semi-supervised SVMs Empirical Studies Extensions

The Problem of Non-convexity

Handling Local Minima

Start with an easy
(unimodal) objective
function and gradually
increase non-convexity.

Work with a family of
objective functions;
parameterically track
minimizers.

Jλ′ is insensitive to
outside unlabeled data.

Jλ′(w , y′) =
λ
2‖w‖2 + 1

l

∑l
i=1 l2 (yi , oi) +

λ′

u

∑u
j=1 l2

(

y ′
j , o′

j

)

−3 −2 −1 0 1 2 3
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
 Effective loss

f(x)

lo
ss

Increasing λ’



Fast (fully supervised) Linear SVMs The cluster assumption for SSL Semi-supervised SVMs Empirical Studies Extensions

The Problem of Non-convexity

Deterministic Annealing: Intuition

Question
For the decision boundary to locally evolve in a desirable
manner, what should the loss function look like ?
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Key Idea

Deform the loss function (objective) as the optimization
proceeds; use outside unlabeled data.
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A Deterministic Annealing (DA) approach

Deterministic Annealing for Semi-supervised SVMs

Another Equivalent Continuous Optimization Problem

“Relax” y′ to p = (p1 . . . pu) where pj is like the prob that y ′
j = 1.

J(w , p) = EpJ(w , y′) =
λ

2
‖w‖2 +

1
l

l∑

i=1

l2 (yi , oi)

+
λ′

u

u∑

j=1

[

pj l2
(

+, o′
j

)

+ (1 − pj)l2
(

−, o′
j

)]

Family of Objective Functions: Avg Cost - T Entropy

JT (w , p) = EpJ(w , y′) − T H(p)
︸ ︷︷ ︸

−
T
u

Pu
j=1[pj log pj+(1−pj ) log (1−pj )]
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A Deterministic Annealing (DA) approach

Deterministic Annealing: Some Quick Comments

Smoothing Interpretation

At high T , spurious & shallow local min are smoothed away.

Deterministic Variant of Simulated Annealing (SA)

SA is a stochastic search technique based on setting up a
Markov process whose steady state distribution minimizes
EpJ − TH(p). Probabilistic guarantee for global optimum as
T → 0 very slowly.

Proven Heuristic

No guarantees, but has a strong record of empirical success.
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A Deterministic Annealing (DA) approach

Deterministic Annealing for Semi-supervised SVMs

Full Optimization problem at T

minw ,p JT (w , p) = λ
2‖w‖2 + 1

l

∑l
i=1 l2 (yi , oi) +

λ′

u

∑u
j=1

[

pj l2
(

+, o′
j

)

+ (1 − pj)l2
(

−, o′
j

)]

+

T
u

∑u
j=1

[
pj log pj + (1 − pj) log pj

]
s.t (1/u)

∑u
j=1 pj = r

Details

Deformation: T controls non-convexity of JT (w , p). At
T = 0, reduces to the original non-convex objective
function J(w , p).

Optimization at T (w?
T , p?

T ) = argminw ,p JT (w , p)

Annealing: Return: w? = limT→0 w?
T

Balance constraint: 1
u

∑u
j=1 pj = r
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A Deterministic Annealing (DA) approach

Alternating Convex Optimization

At any T, optimize w keeping p fixed

Use Fast l2-SVMs – two copies of unlabeled data but due
to linearity, can reformulate CGLS to work on one.

At any T, optimize p keeping w fixed

p?
j = 1

1+e
gj−ν

T

gj = λ′

[

l2(+, o′
j ) − l2(−, o′

j )
]

Obtain ν by solving 1
u

∑u
j=1

1

1+e
gi−ν

T

= r

Stopping Conditions

At any T, alternate until KL(pnew |pold ) < ε. Obtain p?
T .

Reduce T, Seed old p?
T , until H(p?

T ) < ε.
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A Deterministic Annealing (DA) approach

DA Effective Loss wrt T
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Experiments

Datasets

Dataset #features sparsity #train #test r Source
aut-avn 20707 51.32 35588 35587 0.65 Usenet
real-sim 20958 51.32 36155 36154 0.31 Usenet

ccat 47236 75.93 17332 5787 0.46 Reuters
gcat 47236 75.93 17332 5787 0.30 Reuters

33-36 59072 26.56 41346 41346 0.49 Yahoo!
pcmac 7511 54.58 1460 486 0.51 20NG
rcv1 47236 76.73 804414 - 0.18 Reuters
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Quality of Optimization

DA TSVM (1) TSVM (max)
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Observations

DA often gives significantly better minimizers
[aut-avn,ccat,pcmac].

Multiple switching TSVM no worse than single switching !
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Quality of Optimization

DA TSVM (1) TSVM (max)
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Observations

DA often gives significantly better minimizers
[aut-avn,ccat,pcmac].

Multiple switching TSVM no worse than single switching !
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Quality of Optimization

DA TSVM (1) TSVM (max)
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DA often gives significantly better minimizers
[aut-avn,ccat,pcmac].

Multiple switching TSVM no worse than single switching !
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Generalization Performance

DA TSVM SVM
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Observations

Unlabeled data always very useful !

TSVM’s worse minimizers also generalize fairly well.

Max-switching performs as well as single switching.



Fast (fully supervised) Linear SVMs The cluster assumption for SSL Semi-supervised SVMs Empirical Studies Extensions

Generalization Performance

DA TSVM SVM
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Unlabeled data always very useful !

TSVM’s worse minimizers also generalize fairly well.

Max-switching performs as well as single switching.
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Generalization Performance

DA TSVM SVM
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Unlabeled data always very useful !

TSVM’s worse minimizers also generalize fairly well.

Max-switching performs as well as single switching.
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Speed comparison with SVM-Light

CPU Time [On a split with fewest labels]

Dataset SVMlight TSVM(1) TSVM(max) DA
aut-avn > 1 day 1.6hrs 7min 24min
real-sim > 1 day 1.7hrs 6min 19min

ccat 4hrs 40min 6.5min 20min
gcat > 1 day 20min 6min 3min

33-36 14hrs 2hrs 5min 7min
pcmac 167sec 4sec 2sec 12sec

• Massive speedups over SVM-Light
• TSVM(1) < DA < TSVM (max)
• Implemented in Matlab, C much faster. Easily parallelizable.



Fast (fully supervised) Linear SVMs The cluster assumption for SSL Semi-supervised SVMs Empirical Studies Extensions

Larger-Scale Experiment

Reuters C15: 804414 examples, 47256 features (r=0.18)

PRBEP l=100 l=1000

SVM 74.59 84.79
TSVM 77.73 86.60

DA 78.11 85.79
Obj.Value

TSVM 0.094673 0.127172
DA 0.08073 0.12194

CPU Time

TSVM 1hr 22min 40min
(switches) (27670) (8506)

DA 2hr 8min 1hr 6min
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Summary of Experimental Results

Unlabeled data is very useful.

DA better optimizer than TSVM.

Both compete well in terms of generalization.

Local minima issues less severe on text than on other
domains.

Massive speedups over SVM-Light. Max-switching TSVM
is fastest, DA comparable.
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Extensions

Handing uncertain class ratios.

Better annealing sequence for DA.

Fast l2-SVMs can be used to implement other SSL
assumptions: Manifold (Laplacian SVM) and Co-training
(Co-regularization).

Software implementation available:
SVMlin: Fast Linear SVM Solvers for Supervised and
Semi-supervised Learning,
http://www.cs.uchicago.edu/∼vikass/svmlin.html
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