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1 Preliminaries: Proofs

Proposition 1.1 (Properties of f -unit-circulant matrices). : (1) Downward shift-and-scale action on
a vector: Zfv = [fvn, v1, v2 . . . vn−1]T .
(2) Upward shift-and-scale transposed action on a vector: ZT

f v = [v1, v2, . . . vn−1, fv0]T .
(3) f-potent: Zn

f = fI

(4) Inverse: Z−1f = ZT
f−1 .

(5) ZT
f = JZfJ and Zf = JZT

f J.

Proof of Proposition 1.1. The first two properties can be directly verified from the definition. The
third property - which will turn out to be crucial - follows since applying Zf n times cycles the vector
back to its original form but with all entries scaled by f . The fourth property follows becauses ZT

f−1

cancels the downward shift-and-scale action of Zf . The fifth property can be verified by observing
the shifting/reversing actions of the left and right hand side on an arbitrary vector.

Lemma 1.2 (Rank 2 displacement property of Toeplitz matrices). For any Toeplitz matrix T and
scalars e, f , then rank(∇Ze,Zf

[T]) ≤ 2

Proof of Lemma 1.2. Let t = [t−, t0, t+]T where t− = [t−(n−1), . . . t−1]T and t+ = [t1 . . . tn−1].
The notation T(t)ij = ti−j denotes an n × n Toeplitz matrix. The following can be seen from the
shift-and-scale properties of f -unit-circulants.

ZfT(t) =

[
fJt+ ft0
T(t′) t−

]
, T(t)Zf =

[
Jt− ft0
T(t′) ft+

]
where t′ = [t−(n−2) . . . t−1, t0, t1 . . . tn−2]. From this, it should be clear that for any scalars e, f ,
the following is true.

∇Ze,Zf
[T(t)] = ZeT(t)−T(t)Zf =

[
J(et+ − t−) (e− f)t0
0(n−1)×(n−1) (t− − ft+)

]

Since any matrix of the form
[

uT w
0(n−1)×(n−1) v

]
= e0[u w

2 ]T +

(
w
2
v

)
eTn , it follows that

∇Ze,Zf
[T(t)] has rank at most 2.

Theorem 1.3 (Theorem 3.3, [2]). ∇A,B is invertible if and only if λi(A) 6= λj(B) and 4A,B

is invertible if and only if λi(A)λj(B) 6= 1, for any pair of eigenvalues λi(A), λj(B) of A,B
respectively.

Corollary 1.4. ∇Z1,Z−1 is invertible.
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Proof. Let λ, µ be an eigenvalue of Z1 and Z−1 respectively. Then, for the associated respective
eigenvectors v,u:

Z1v = λv

Z−1u = µu

The first equation above implies [vn, v1 . . . vn−1]T = λ[v1 . . . vn] which in turn implies that vn =
λv1, v1 = λv2, . . . vn−1 = λvn. It is easy to see that since v 6= 0, it must be true that λn = 1.
A similar argument for Z1 shows that µn = −1. Hence, λ 6= µ and therefore Z1,Z−1 satisfy the
invertibility conditions of Theorem 1.3.

Several invertibility formulae in [2] rely on the following simple but far reaching result:
Theorem 1.5 (Theorem 3.3, [2]). For any m×m matrix A, n×n matrix B, m×n matrix M and
for all natural numbers k, we have,

M = AkMBk +

k−1∑
i=0

Ai4A,B[M]Bi (1)

Proof of Theorem 1.5. For k = 0, the identity is trivial. Let us show that it holds for k+ 1 under the
assumption that it is true for k. Multiplying the identity on the left by A and right by B, we have,

AMB = Ak+1MBk+1 +

k−1∑
i=0

Ai+1 (M−AMB)Bi+1

= Ak+1MBk+1 +

k∑
i=0

Ai (M−AMB)Bi − (M−AMB)

Canceling AMB from both sides yields the identity for k + 1.

Theorem 1.6 (Properties of Displacement Operators, [1]).
∇A,B[M−1] = −M−1∇A,B[M]M−1 (2)
∇A,C[MN] = ∇A,B[M]N + M∇B,C[N] (3)

Lemma 1.7 ( [2], Theorem 3.1). If A is non-singular, ∇A,B = A4A−1,B. If B is non-singular,
∇A,B = −4A,B−1B

Proof. The statement of the theorem follows from the following simple observations: If A is invert-
ible, we have AM −MB = A(M −A−1MB), and if B is invertible, we have AM −MB =
−(M−AMB−1)B.

2 Krylov Decomposition and Circulant-SkewCirculant decomposition for
Toeplitz-like Matrices

Proof of Theorem 2.2

Proof. The statement of the proof follows from Theorem 1.5 setting k = n, using An = aI,Bn =
bI; inserting4A,B[M] = GHT in the sum in the second term of Eqn. 1.

M = AnMBn +

n−1∑
i=0

Ai4A,B[M]Bi (4)

= abM +

n−1∑
i=0

AiGHTBi

= abM +

r∑
i=1

[gi Agi A
2gi . . .A

n−1gi][hi B
Thi (BT )2hi . . . (B

T )n−1hi]
T

and observing that the resulting expressions can be rewritten in terms of Krylov matrices generated
by A,BT applied to columns of G,H.
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We need the following simple identity in preparation for the Proof of Theorem 2.4.
Lemma 2.1. Z1(JZT

1 g)T = Z1(g)

Proof. We show that Z1(JZT
1 g) = Z1(g)T . Explicitly, by taking downshifts of g and stacking

them as rows, we have,

Z1(g)T =


g0 g1 . . . gn−1
gn−1 g0 . . . gn−2

...
...

... g1
g1 . . . gn−1 g0


At the same time, observe that,

JZT
1 g =


g0
gn−1

...
g1


which is the first column of Z1(g)T . Since the rest of the columns follow by taking downward shifts,
the identity follows.

Proof of Theorem 2.4

Proof. By Lemma 1.7, it follows that if ∇Z1,Z−1 [M] = GHT , then 4ZT
1 ,Z−1

=
(
ZT

1 G
)
HT .

Plugging A = ZT
1 ,B = Z−1, a = 1, b = −1 in Theorem 2.2 in the main paper, we get,

M =
1

2

r−1∑
i=0

krylov(ZT
1 ,Z

T
1 gi)krylov(ZT

−1,hi)
T

=
1

2

r−1∑
i=0

JZ1(JZT
1 gi) [JZ1(Jhi)]

T (5)

=
1

2

r−1∑
i=0

JZ1(JZT
1 gi)Z1(Jhi)

TJ (6)

=
1

2

r−1∑
i=0

(
JZ1(JZT

1 gi)J
) (

JZ1(Jhi)
TJ
)

(7)

=
1

2

r−1∑
i=0

Z1(JZT
1 gi)

TZ−1(Jhi) (8)

=
1

2

r−1∑
i=0

Z1(gi)Z−1(Jhi) (9)

Above, we use the following facts (1) J2 = I, (2) Property 5 in Proposition 1.1 to deduce that
krylov(ZT

1 ,v) = krylov(JZ1J,v) = JZ1(Jv) and (3) Lemma 2.1.
Lemma 2.2. For any scalars e 6= 0, f 6= 0, rank(∇Ze,Zf

[M]) ≤ r if and only if
rank(∇Z1,Z−1

[M]) ≤ r.

Proof. Observe that Ze = diag([e, 1n−1]T )Z1 = Z1diag([e, 1n−1]T ) i.e. the scaling ac-
tion is delegating to a diagonal matrix, via pre- or post-multiplication. Likewise, Zf =
diag([−f, 1n−1, ])Z−1 = Z−1diag([−f, 1n−1, ]). Hence,

∇Ze,Zf
[M] = ZeM−MZf (10)

= diag([e, 1n−1])Z1M−MZ−1diag([−f, 1n−1])

= GHT
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It follows that Z1M − MZ−1 = ḠH̄T , where Ḡ = diag([e−1, 1n−1])G, H̄ =
Hdiag([−f−1, 1n−1]) . The converse can be shown similarly.

3 Learning Toeplitz-like Matrices: Proofs

Proof of Theorem 3.1

Proof. Toeplitz-like structured matrices have the form:

M(G,H) =

r∑
i=1

Z1(gi)Z−1(hi) (11)

1. For r = 1, when H = [e0], we have Z−1(h0) = I. Hence, the sum in Eqn. 11 reduces to
a general Circulant term. Likewise, when G = [e0], we have Z1(g0) = I Eqn. 11 reduces
to a general skew-circulant.

2. The result follows from Theorem 2.4 in the main paper for Toeplitz matrices by re-defining
h ≡ Jh.

3. For any Toeplitz matrix T, using Theorem 1.6, Eqn. 2, we have

∇Z1,Z−1
[T−1] = −T−1∇Z1,Z−1

[T]T−1

= −
(
T−1G

) (
HTT−1

)
(12)

where G,H are factors with rank upto 2. The last expression shows that ∇Z1,Z−1
[T−1]

also has rank upto 2. We can now use Theorem 2.4.

4. The proof follows by induction. For t = 1, i.e. the result is true by Theorem 2.4 for a
single Toeplitz matrix and the previous assertion concerning inverses of Toeplitz matrices.
Assume it is true for t.

Now in Theorem 1.6 Eqn 3, let M = A1 . . .At and let N = At+1 and set the operator
matrices to be A = Z1,C = Z−1 and B = Ze for some scalar e 6= 1 or −1. Then we
have,

∇Z1,Z−1
[A1 . . .At+1] = ∇Z1,Ze

[A1 . . .At]At+1 + A1 . . .At∇Ze,Z−1
[At+1]

In the first term above, ∇Z1,Ze
[A1 . . .At] has rank at most 2t if and only if

∇Z1,Z−1
[A1 . . .At] has rank at most 2t by Lemma 2.2; and the latter is true by the by

the inductive assumption. In the second term ∇Z1,Z−1 [At+1] has rank at most 2 by The-
orem 2.4. Hence, the new displacement rank is no more than 2t + 2. The completes the
inductive argument.

5. We use the fact that for any linear displacement operator L, L[
∑p

i=1 αi[Mi]] =∑p
i=1 αiL[Mi]. If each term in the sum has rank at most 2t, then the sum has rank at-

most 2tp.

6. Follows from Corollary 1.4 and the fact that for any n× n matrix M, rank(∇Z1,Z−1
[M])

is atmost n.

Proof of Proposition 3.4

Proof. The Jacobian of a vector valued function f : Rm 7→ Rn is the n×m matrix

[Jf ]ij =
∂fi
∂xj

,
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where f(x) = [f1(x), . . . fn(x)]
T . So consider the vector-valued function f(v) = Zf (v)x for a

fixed x. By the diagonalization of f-Circulant matrices, Theorem 3.2 in the main paper,

f(v) = D−1f Ω−1n diag(Ωn(f ◦ v))Ωn(f ◦ x)

Define Uf = ΩnDf and y = Ufv. Then f(v) = h(g(v)) where h(v) = Ufv and g(v) =

diag(Ufv)y. Note that ∂gi
∂vj

= yi[Uf ]ij . The Jacobian of h is simply U−1f while Jacobian of g
with respect to v is simply diag(y)Uf . From the chain rule it follows that the Jacobian of f is
U−1f diag(Ufx)Uf = Zf (x).

Proof of Proposition 3.5

Proof. The transform under consideration is,

f(x,G,H) =

r∑
i=1

Z1(gi)Z−1(hi)x (13)

The Jacobian with respect to gi is simply the Jacobian of the transform Z1(gi)y where y =
Z−1(hi)x. Hence, we can apply Proposition 3.4 for f = −1 to get that

Jgj
f |x = Z1 (Z−1(hj)x)

Similarly, the Jacobian with respect to hj follows immediately from the chain rule and Proposi-
tion 3.5 for f = −1.

4 Additional Empirical Results
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