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1 Preliminaries: Proofs

Proposition 1.1 (Properties of f-unit-circulant matrices). : (1) Downward shift-and-scale action on
a vector: Zyv = [fvy,,v1,v2 .. T

(2) Upward shift-and-scale transposed action on a vector: Z?v = [v1,v2,...Un_1, fUo
(3) f-potent: 7 = f1

(4) Inverse: Z;l = Z?,l.

(5)Z% =J3Z;Jand Zy = JZ?J.

I

Proof of Proposition[l.1] The first two properties can be directly verified from the definition. The
third property - which will turn out to be crucial - follows since applying Z ; n times cycles the vector
back to its original form but with all entries scaled by f. The fourth property follows becauses Z%_,

cancels the downward shift-and-scale action of Z . The fifth property can be verified by observing
the shifting/reversing actions of the left and right hand side on an arbitrary vector. O

Lemma 1.2 (Rank 2 displacement property of Toeplitz matrices). For any Toeplitz matrix T and
scalars e, f, then rank(Vz, z,[T]) < 2

Proof of Lemma[l.2) Lett = [t_,to,t4]7 where t_ = [t_(,_1),...t—1]" and t4 = [t1 ... tp—1].
The notation T'(¢);; = t;—; denotes an n x n Toeplitz matrix. The following can be seen from the
shift-and-scale properties of f-unit-circulants.

Jt t Jt_ t
zro = | 4w ] moz =] 3 f ]

where t' = [t_(,_2)...t_1,t0,t1...t,_2]. From this, it should be clear that for any scalars e, f,
the following is true.

V.2, [T(V)] = Z.T(6) - T(t)2 = [ O R 5 }

T w

Since any matrix of the form | u w } =eolu 2|7 + ( 2 ) el it follows that
(n—1)x(n-1) V v

Vz.z,[T(t)] has rank at most 2. O

Theorem 1.3 (Theorem 3.3, [2). Va g is invertible if and only if \;(A) # A;(B) and Aa B
is invertible if and only if \i(A)X;(B) # 1, for any pair of eigenvalues A\;(A),\;(B) of A,B
respectively.

Corollary 1.4. Vz, 7z | is invertible.



Proof. Let A, u be an eigenvalue of Z; and Z_; respectively. Then, for the associated respective
eigenvectors v, u:
Z:v = Av
Z_ju = pu
The first equation above implies [v,,,v1 ... v, 1] = A[vy ... v,] which in turn implies that v, =
Av1, U1 = Aug,...Unp_1 = AU,. Itis easy to see that since v # 0, it must be true that \" = 1.

A similar argument for Z; shows that u* = —1. Hence, A # p and therefore Z1,Z_; satisfy the
invertibility conditions of Theorem|1.3 O

Several invertibility formulae in [2] rely on the following simple but far reaching result:
Theorem 1.5 (Theorem 3.3, [2]]). For any m x m matrix A, n x n matrix B, m x n matrix M and
for all natural numbers k, we have,
k—1
M = A"MBF* + Z A'Ap g[M|B (1)
i=0

Proof of Theorem For k = 0, the identity is trivial. Let us show that it holds for k£ 4 1 under the
assumption that it is true for k. Multiplying the identity on the left by A and right by B, we have,

k—1
AMB = AMI'MBM! 4y AT (M- AMB)B™!
=0

k
AFPMBMT! 43 " AY (M~ AMB)B' — (M — AMB)

i=0
Canceling AMB from both sides yields the identity for & + 1. O
Theorem 1.6 (Properties of Displacement Operators, [1]]).
VapM™] = —-M'VagMM™ )
VacMN] = VapM|N+MVpgc[N] 3)

Lemma 1.7 ( 2], Theorem 3.1). If A is non-singular, VAo B = AAx-1 g. If B is non-singular,
VA’B = —AA7B—1B

Proof. The statement of the theorem follows from the following simple observations: If A is invert-
ible, we have AM — MB = A(M — A‘lMB), and if B is invertible, we have AM — MB =
—(M - AMB)B. O

2 Krylov Decomposition and Circulant-SkewCirculant decomposition for
Toeplitz-like Matrices

Proof of Theorem 2.2

Proof. The statement of the proof follows from Theorem [I.3]setting k = n, using A" = oI, B" =
bL; inserting A a g[M] = GHT in the sum in the second term of Eqn.
n—1
M = A"MB”" + Z A'Ap g[M|B 4)
i=0
n—1
= abM+ ) A'GH'B’

=0

= abM+ Z[gi Ag; A%g;...A" 'g;]lh; B"h; (B")*h;...(B")" 'h;]"

i=1
and observing that the resulting expressions can be rewritten in terms of Krylov matrices generated
by A, BT applied to columns of G, H. O



We need the following simple identity in preparation for the Proof of Theorem 2.4.
Lemma 2.1. Z,(JZTg)" = Z,(g)

Proof. We show that Z,(JZTg) = Z;(g)T. Explicitly, by taking downshifts of g and stacking
them as rows, we have,

go g1 s On—1
In—1 90 cor Gn—2
Zy (g)T = . . .
. . g9
g1 <o Gn-—1 90
At the same time, observe that,
go
In—1
J Zng = .
9
which is the first column of Z; (g)”". Since the rest of the columns follow by taking downward shifts,
the identity follows. O

Proof of Theorem 2.4

Proof. By Lemma it follows that if Vz, z_,[M] = GHT, then Agrz , = (z{G)HT.
Plugging A =ZT B =7Z_;,a = 1,b = —1 in Theorem 2.2 in the main paper, we get,
r—1
1
M = 3 Z krylov(ZT, ZT g krylov(Z1 |, h;)T
=0
1 r—1
= 52 1732 g) [(3Z: ()" )
i=0
1 r—1
3 > IZ.(IZ7gi)Z: (Ih;)" T (6)
=0

1 r—1
5> (1Z:(9Z{g))d) (IZ1(Ih:)"J) (7

=0

1 r—1

=0

1 r—1

= 5D Zi(g)Z1(Ihy) ©)
=0

O

Above, we use the following facts (1) J2 = I, (2) Property 5 in Proposition to deduce that
krylov(ZT,v) = krylov(JZ:J,v) = JZ1(Jv) and (3) Lemmal2.1}

Lemma 2.2. For any scalars e # 0,f # 0, rank(Vz, z,[M]) < r if and only if
rank(Vz, z_,[M]) <r.

Proof. Observe that Z. = diag([e,1,-1]7)Z1 = Zidiag([e,1,-1]T) i.e. the scaling ac-
tion is delegating to a diagonal matrix, via pre- or post-multiplication. Likewise, Z; =
dzag([—f, 1n71,])Z,1 = Zfldiag([_fv ]-nflv])' Hence,

Vz.z,M] = ZM-MZ (10)
= diag([e, 1,-1])Z1M — MZ_,diag([—f, 1,-1])
= GH"



It follows that ZiM — MZ_; = GH?, where G = diag(le™',1,1])G,H =
Hdiag([—f~',1,_1]) . The converse can be shown similarly. O

3 Learning Toeplitz-like Matrices: Proofs

Proof of Theorem 3.1

Proof. Toeplitz-like structured matrices have the form:

M(G, H) = szgi)z_l(hi) (11)

1. Forr = 1, when H = [eg], we have Z_;(hg) = I. Hence, the sum in Eqn. |l l|reduces to
a general Circulant term. Likewise, when G = [eg], we have Z;(go) = I Eqn. |l I{reduces
to a general skew-circulant.

2. The result follows from Theorem 2.4 in the main paper for Toeplitz matrices by re-defining
h = Jh.

3. For any Toeplitz matrix T, using Theorem[I.6] Eqn. 2] we have
Vz,z,[T7'] = ~T7'Vz,2 ,[TIT™
= —(T7'G)H"T) (12)

where G, H are factors with rank upto 2. The last expression shows that Vz, z_, [T ]
also has rank upto 2. We can now use Theorem 2.4.

4. The proof follows by induction. For ¢ = 1, i.e. the result is true by Theorem 2.4 for a
single Toeplitz matrix and the previous assertion concerning inverses of Toeplitz matrices.
Assume it is true for ¢.

Now in Theorem [I.6|Eqn [3] let M = A; ... A and let N = A, ; and set the operator
matrices to be A = Z,,C = Z_; and B = Z, for some scalar ¢ # 1 or —1. Then we
have,

VZ]_)Zi1 [Al [ At-‘rl] - Vzhze [Al .. A.t]A.tJ’_l + Al [ AtVZe7Z71 [At-&-l}

In the first term above, Vz, 7z [Ai...A;] has rank at most 2¢ if and only if
Vz,z_,[A1...A;] has rank at most 2¢ by Lemma 2.2} and the latter is true by the by
the inductive assumption. In the second term Vz, z ,[A;41] has rank at most 2 by The-
orem 2.4. Hence, the new displacement rank is no more than 2¢ + 2. The completes the
inductive argument.

5. We use the fact that for any linear displacement operator L, L[> %, o;[M;]] =
> | a;LIM;]. If each term in the sum has rank at most 2¢, then the sum has rank at-
most 2tp.

6. Follows from Corollary [1.4and the fact that for any 7 x n matrix M, rank(Vz, z_, [M])
is atmost n.

O
Proof of Proposition 3.4

Proof. The Jacobian of a vector valued function f : R™ +— R" is the n X m matrix

_ 0fi

- )
817]‘

[T flis
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where f(x) = [f1(x), ... fn(x)]". So consider the vector-valued function f(v) = Z #(v)x for a
fixed x. By the diagonalization of f-Circulant matrices, Theorem 3.2 in the main paper,

f(v) = D; Q" diag(Q,,(f o v)) 2, (f 0 x)

Define Uy = Q,Df and y = Usv. Then f(v) = h(g(v)) where h(v) = Uyv and g(v) =
diag(Usv)y. Note that gg? = y;[Uy¢)ij. The Jacobian of h is simply U;l while Jacobian of ¢
with respect to v is simply diag(y)U;. From the chain rule it follows that the Jacobian of f is

U 'diag(Upx)Uy = Zy(x). O

Proof of Proposition 3.5

Proof. The transform under consideration is,

T

F6, G H) = Zi(g:)Z 1 (hi)x (13)
i=1

The Jacobian with respect to g; is simply the Jacobian of the transform Z,(g;)y where y =
Z_,(h;)x. Hence, we can apply Proposition 3.4 for f = —1 to get that

Jg, flx = Z1(Z-1(h;)x)
Similarly, the Jacobian with respect to h; follows immediately from the chain rule and Proposi-
tion 3.5 for f = —1. O
4 Additional Empirical Results
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