
THE UNIVERSITY OF CHICAGO

ON SEMI-SUPERVISED KERNEL METHODS

A DISSERTATION SUBMITTED TO

THE FACULTY OF THE DIVISION OF THE PHYSICAL SCIENCES

IN CANDIDACY FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY

DEPARTMENT OF COMPUTER SCIENCE

BY

VIKAS SINDHWANI

CHICAGO, ILLINOIS

DECEMBER 2007

Copyright c© 2007 by Vikas Sindhwani

All rights reserved

To my Parents.

ABSTRACT

Semi-supervised learning is an emerging computational paradigm for learning from

limited supervision by utilizing large amounts of inexpensive, unsupervised observa-

tions. Not only does this paradigm carry appeal as a model for natural learning,

but it also has an increasing practical need in most if not all applications of machine

learning – those where abundant amounts of data can be cheaply and automatically

collected but manual labeling for the purposes of training learning algorithms is often

slow, expensive, and error-prone.

In this thesis, we develop families of algorithms for semi-supervised inference.

These algorithms are based on intuitions about the natural structure and geometry

of probability distributions that underlie typical datasets for learning. The classical

framework of Regularization in Reproducing Kernel Hilbert Spaces (which is the basis

of state-of-the-art supervised algorithms such as SVMs) is extended in several ways

to utilize unlabeled data.

These extensions are embodied in the following contributions:

(1) Manifold Regularization is based on the assumption that high-dimensional

data truly resides on low-dimensional manifolds. Ambient globally-defined kernels

are combined with the intrinsic Laplacian regularizer to develop new kernels which

immediately turn standard supervised kernel methods into semi-supervised learners.

An outstanding problem of out-of-sample extension in graph transductive methods is

resolved in this framework.

(2) Low-density Methods bias learning so that data clusters are protected from

being cut by decision boundaries at the expense of turning regularization objectives

into non-convex functionals. We analyze the nature of this non-convexity and propose

deterministic annealing techniques to overcome local minima.

iv

v

(3) The Co-regularization framework is applicable in settings where data appears

in multiple redundant representations. Learners in each representation are biased to

maximize consensus in their predictions through multi-view regularizers.

(4) We develop l1 regularization and greedy matching pursuit algorithms for sparse

non-linear manifold regularization.

(5) We develop specialized linear algorithms for very large sparse data matrices,

and apply it for probing utility of unlabeled documents for text classification.

(6) Empirical results on a variety of semi-supervised learning tasks suggest that

these algorithms obtain state-of-the-art performance.

ACKNOWLEDGMENTS

I am grateful to Partha Niyogi for inspiring me with his vision and deep passion

this subject. His constant encouragement, patience and thoughtful advice, spread

over the last six years across numerous hours on the blackboard, campus walks and

squash courts, have been of immense help to me in maturing as a researcher. I hope

to continue to collaborate with Partha.

I thank David McAllester for his support, helpful conversations and the oppor-

tunity to intern at the Toyota Technological Institute in the summer of 2004 where

parts of this thesis were written. I learnt a lot in David’s classes and talks. I admire

David for his amazing technical sharpness, and scientific and philosophical views.

Jorge Nocedal graciously admitted me to his optimization classes at Northwestern

University. I thank him for going very much out of his way to participate in my thesis

committee in the middle of numerous other commitments and to also evaluate its

contributions from a solid optimization perspective.

Sathiya Keerthi taught me innumerable nuts and bolts of machine learning and

optimization. He graciously offered me consecutive internships at Yahoo! Research

in the summer of 2005 and 2006. I continue to enjoy a close friendship and a highly

productive collaboration with him.

I first met Olivier Chapelle at Max Planck Institute but developed a friendship

with him more recently. Olivier is a role model for machine learning researchers of

my generation in subscribing to very high standards of honesty and taste in research.

I thank Misha Belkin, Chu Wei, Subrata Rakshit and Deniz Erdogmus for enjoy-

able collaborations over the years. I hope we keep working together.

Dinoj Surendran, Irina Matveeva, Varsha Dani, G. Murali Krishnan, Xiaofei He

and Hariharan Narayanan have always offered a willing ear for my ideas and questions,

vi

vii

and have welcomed the spirit of learning together.

Finally, I could not have come this far without the love and support of my wife,

Deannna Barenboim, my parents, Renu and Subhash Sindhwani, my sister, Pooja

Kakar and my brother, Sumeet Chawla.

Thank you all very much.

TABLE OF CONTENTS

ABSTRACT . iv

ACKNOWLEDGMENTS . vi

LIST OF FIGURES . xi

LIST OF TABLES . xiii

CHAPTER

1 INTRODUCTION . 1
1.1 In “Layman’s Terms” . 1
1.2 Learning from Examples . 6

1.2.1 Supervised Learning . 6
1.2.2 Reproducing Kernel Hilbert Spaces 13
1.2.3 Representer Theorem . 20
1.2.4 Algorithms : RLS and SVM 22
1.2.5 Unsupervised Learning . 26

1.3 Semi-supervised Learning in Pictures 33
1.4 Contributions of this Thesis . 35

2 MANIFOLD REGULARIZATION: A GEOMETRIC FRAMEWORK . . . 38
2.1 Introduction . 38
2.2 Incorporating Geometry in Regularization 42

2.2.1 Marginal PX is known . 43
2.2.2 Marginal PX Unknown . 44
2.2.3 The Representer Theorem for the Empirical Case 48

2.3 Algorithms . 50
2.3.1 Laplacian Regularized Least Squares (LapRLS) 50
2.3.2 Laplacian Support Vector Machines 51

2.4 Data-dependent Kernels . 55
2.5 Warping an RKHS using Point Cloud Norms 59

2.5.1 Choosing the Point Cloud Norm 62
2.5.2 Back to Concentric Circles . 63

2.6 Related Work and Connections to Other Algorithms 64
2.7 Experiments . 67

2.7.1 Visual Illustration of Ambient-Intrinsic Tradeoff 67
2.7.2 Spoken Letter Recognition . 68
2.7.3 Text Categorization . 71
2.7.4 Results on Benchmark Collections 74

viii

ix

2.8 Unsupervised and Fully Supervised Cases 80
2.8.1 Unsupervised Learning: Clustering and Data Representation . 81
2.8.2 Fully Supervised Learning . 84

2.9 Extensions of Manifold Regularization 85

3 LOW-DENSITY CLASSIFICATION: NON-CONVEX METHODS 86
3.1 The Semi-supervised SVM Formulation 86
3.2 Globally Optimal Branch & Bound Solution 92

3.2.1 Branch and bound basics . 92
3.2.2 Branch and bound for S3VM 92
3.2.3 Generalization Performance at Global vs Local Minima 94

3.3 Extensions of Branch and Bound Algorithm 97
3.4 A Deterministic Annealing Formulation 97

3.4.1 Homotopy Methods . 98
3.4.2 Deterministic Annealing . 99

3.5 Deterministic Annealing for S3VMs 100
3.5.1 Optimization . 101
3.5.2 Annealing Behaviour of Loss functions 105

3.6 Empirical Results . 108
3.7 Discussion . 112

4 CO-REGULARIZATION: A MULTI-VIEW APPROACH 113
4.1 Introduction . 113
4.2 Multi-View Learning . 115
4.3 Co-Regularization . 117
4.4 Kernels for Co-Regularization . 122
4.5 Experiments . 126
4.6 Conclusion . 130

5 SPARSE NON-LINEAR MANIFOLD REGULARIZATION 131
5.1 Sparse Manifold Regularization . 133

5.1.1 Greedy Kernel Matching Pursuit 133
5.1.2 l1 Regularization . 135

5.2 An Empirical Study . 136
5.2.1 Behaviour of Sparse Greedy Method 137
5.2.2 Benchmarking the quality of Basis selected 139

5.3 Intrinsic Regularization On Restricted Function Spaces 141
5.3.1 Sigmoid Method . 142
5.3.2 Slack Method . 143

5.4 Conclusion . 146

x

6 LARGE-SCALE SEMI-SUPERVISED LINEAR METHODS 149
6.1 Introduction . 149
6.2 Modified Finite Newton Linear l2-SVM 151

6.2.1 CGLS . 154
6.2.2 Line Search . 155
6.2.3 Complexity . 156
6.2.4 Other Loss functions . 156

6.3 Fast Multi-switch Transductive SVMs 157
6.3.1 Implementing TSVM Using l2-SVM-MFN 158
6.3.2 Multiple Switching . 159
6.3.3 Seeding . 161

6.4 Linear Deterministic Annealing S3VMs 163
6.4.1 Optimizing w . 164
6.4.2 Optimizing p . 166
6.4.3 Stopping Criteria . 167

6.5 Empirical Study . 168
6.6 Conclusion . 177

REFERENCES . 179

LIST OF FIGURES

1.1 Examples for Learning: A supervisor provides some labels. 2
1.2 Generalization from training examples to new unseen inputs. 2
1.3 Examples for learning may be points on a low-dimensional manifold

embedded in a high-dimensional space. 4
1.4 Intrinsic and ambient distances may be very different 5
1.5 Typical Loss Functions for Learning 8
1.6 Manifold Learning . 30
1.7 Graph Approximation to a Manifold 30
1.8 Circle . 33
1.9 Curve . 33
1.10 Blobs . 34

2.1 A binary classification problem : Classes (diamonds and circles) lie on
two concentric circles. 56

2.2 Contours of the Gaussian Kernel and the decision surface 57
2.3 Contours of the data-dependent modified Kernel 63
2.4 Laplacian SVM with RBF Kernels for various values of γI . Labeled

points are shown in color, other points are unlabeled. 68
2.5 Two Moons Dataset: Best decision surfaces using RBF kernels for

SVM, TSVM and Laplacian SVM. Labeled points are shown in color,
other points are unlabeled. 68

2.6 Isolet Experiment - Error Rates at precision-recall break-even points
of 30 binary classification problems 69

2.7 Isolet Experiment - Error Rates at precision-recall break-even points
on Test set Versus Unlabeled Set. In Experiment 1, the training data
comes from Isolet 1 and the test data comes from Isolet5; in Experiment
2, both training and test sets come from Isolet1. 70

2.8 WebKb Text Classification Experiment : The top panel presents per-
formance in terms of precision-recall break-even points (PRBEP) of
RLS,SVM,Laplacian RLS and Laplacian SVM as a function of num-
ber of labeled examples, on Test (marked as T) set and Unlabeled set
(marked as U and of size 779-number of labeled examples). The bot-
tom panel presents performance curves of Laplacian SVM for different
number of unlabeled points. 74

2.9 Difference in Error Rates (in percentage on the vertical colorbar) over
test sets and unlabeled subsets in the γI−γA plane. The optimal mean
performance is obtained at the point marked by a black star. 82

2.10 Two Moons Dataset: Regularized Clustering 83
2.11 Two Spirals Dataset: Regularized Clustering 84

3.1 Effective Loss function V ′ . 89

xi

xii

3.2 Branch-and-Bound Tree . 94
3.3 The Three Cars dataset, subsampled to 32×32 96
3.4 Annealing behavior of loss functions parameterized by T 106
3.5 Loss functions for JTSVM and ∇TSVM parameterized by λ′. 107
3.6 . 108

4.1 Bipartite Graph Representation of multi-view learning. The small
black circles are unlabeled examples. 116

4.2 Two-Moons-Two-Lines : RLS, Co-trained RLS and Co-RLS 127
4.3 Two-Moons-Two-Lines : Laplacian SVM and Co-Laplacian SVM . . . 128

5.1 How sparse methods approach the full solution. 147
5.2 T (left) and = (right) datasets . 148

6.1 DA versus TSVM(S=1) versus TSVM(S=max): Minimum value of
objective function achieved. 171

6.2 Error rates on Test set: DA versus TSVM (S=1) versus TSVM (S=max)173
6.3 Benefit of Unlabeled data . 174
6.4 Computation time with respect to number of labels for DA and Trans-

ductive l2-SVM-MFN with single and multiple switches. 176

LIST OF TABLES

1.1 Loss functions shown in Figure 1.5 7

2.1 Manifold Regularization Algorithms 55
2.2 Connections of Manifold Regularization to other algorithms 67
2.3 Isolet: one-versus-rest multiclass error rates 71
2.4 Precision and Error Rates at the Precision-Recall Break-even Points of

supervised and transductive algorithms. 73
2.5 Datasets used in the experiments : c is the number classes, d is the

data dimensionality, l is the number of labeled examples, n is the total
number of examples in the dataset from which labeled, unlabeled and
test examples, when required, are drawn. 75

2.6 Transductive Setting: Error Rates on unlabeled examples. Results
on which Laplacian SVMs (LapSVM) and Laplacian RLS (LapRLS)
outperform all other methods are shown in bold. Results for Graph-
Trans, TSVM,∇TSVM,Graph-density, and LDS are taken from [30] . 77

2.7 Transductive Setting: 100-PRBEP for WebKb on unlabeled exam-
ples. Results on which Laplacian SVMs (LapSVM) and Laplacian RLS
(LapRLS) outperform all other methods are shown in bold. LapSVMjoint,
LapRLSjoint use the sum of graph laplacians in each WebKB repre-
sentation. 78

2.8 Semi-supervised Setting: (WebKB) 100-PRBEP on unlabeled and test
examples . 80

2.9 Semi-supervised Setting: Error rates on unlabeled and test examples. 81

3.1 Results on the two moons dataset (averaged over 100 random realiza-
tions) . 95

3.2 Results on the Three Cars dataset (averaged over 10 random realizations) 96
3.3 Semi-supervised Learning with Deterministic Annealing. 105
3.4 Number of successes out of 10 trials. 108

3.5 Datasets with d features, l labeled examples, u unlabeled examples, v
validation examples, t test examples. 109

3.6 Comparison between SVM, JTSVM,∇TSVM and DA (all with quadratic
hinge loss (l2)). For each method, the top row shows mean error rates
with model selection; the bottom row shows best mean error rates.
u/t denotes error rates on unlabeled and test sets. Also recorded in
performance of DA with squared loss (sqr). 110

3.7 Importance of Annealing: DA versus fixed T (no annealing) optimiza-
tion. For each method, the top row shows mean error rates with model
selection; the bottom row shows best mean error rates. u/t denotes
error rates on unlabeled and test sets. 111

xiii

xiv

4.1 Mean precision-recall breakeven points over unlabeled documents for
a hypertext classification task. 129

4.2 Mean precision-recall breakeven points over test documents and over
unlabeled documents (test , unlabeled) 130

5.1 Datasets with dim features; l labeled, u unlabeled, and v validation
examples. In experiments below, we focus on basis sets of size dmax. . 137

5.2 Improvements with hyper-parameter tuning. 139
5.3 Comparison of Basis Selection Schemes 141
5.4 Improvements with Sigmoid Method 143
5.5 Performance of greedy and improvements with slack and its com-

bination with greedy . 145

6.1 Two-class datasets. d : data dimensionality, n̄0 : average sparsity,
l + u : number of labeled and unlabeled examples, t : number of test
examples, r : positive class ratio. 169

6.2 Comparison of minimum value of objective functions attained by TSVM
(S=max) and DA on full-ccat and full-gcat. 172

6.3 Comparison of minimum value of objective functions attained by TSVM
(S=max) and DA on kdd99 . 172

6.4 TSVM (S=max) versus DA versus SVM: Error rates over unlabeled
examples in full-ccat and full-gcat. 175

6.5 DA versus TSVM (S = max) versus SVM: Error rates over unlabeled
examples in kdd99. 175

6.6 Computation times (mins) for TSVM (S=max) and DA on full-ccat and
full-gcat (804414 examples, 47236 features) 177

6.7 Computation time (mins) for TSVM(S=max) and DA on kdd99 (4898431
examples, 127 features) . 177

CHAPTER 1

INTRODUCTION

1.1 In “Layman’s Terms”

Artificial Intelligence, as a scientific and engineering discipline, has a very challenging

goal – to replicate on a machine the unique ability of humans to communicate via

elaborate speech and language systems, to recognize and manipulate objects with re-

markable dexterity, and to express much celebrated competence in arts, mathematics

and science. The central working postulate of this thesis is that the process of Learn-

ing is the cornerstone of Intelligence. “Intelligent behaviour” is not programmed or

memorized; it arises out of interaction with an environment that can display complex

variability, where an internal representation of the world is adaptively constructed

through the process of learning.

Numerous learning paradigms have been proposed to deal with the richness and

complexity of tasks that an intelligence-capable agent might be required to learn. The

contents of this thesis reside within the paradigm of Learning from Examples. For

illustration, we consider the task of identifying handwritten digits, learnt by millions

of humans in their early childhood. A stream of visual stimuli of digits constitutes

the learning experience of a child. This stream is sometimes accompanied by labels

provided by a supervisor, associating a stimulus with a specific category or desired

response. Figure 1.1 shows a visual digit stream where some digits (labeled examples)

have been labeled by a supervisor.

The process of learning from examples, is that of utilizing such a sequence of

training examples (which we may call D) to find a good map (say f⋆) from this space

of images (called X) to the space of labels (called Y = {0, 1, . . . 9}), that frequently

1

2

Figure 1.1: Examples for Learning: A supervisor provides some labels.
9 0 2 0 8 4 5

8 3 2 9 4

7 5 7 6

1 6

1

3

provides the correct response to a new, unseen input, such as in the instance shown

in Figure 1.2.

Figure 1.2: Generalization from training examples to new unseen inputs.

f* () = 9

Learning Algorithms may be designed to construct such maps by selecting a suit-

able function f⋆ from a hypothesis space H of functions, based on some performance

criterion measured on the training examples. Typically, a loss function, which we

denote by V , is used to evaluate the predictions given by a function with respect

to the labels provided by the supervisor. The hope is that sufficient training results

in successful generalization to novel examples and convergence to a function that is

optimal in some sense. The human brain presumably constructs such an optimal map

when trained in early childhood.

3

A motivating observation for this thesis is that the human learning apparatus

seems to somehow remarkably learn highly complex tasks without much supervised

assistance. In the digit recognition example above, each visual stimulus forms a

retinal image which is a collection of signals from millions of photoreceptor cells in

the human eye. Examples for learning may be considered as points in a very high

dimensional abstract image space where dimensions corresponds to the strengths of

signals on these cells.

The process of learning to recognize digits may be conceptualized as that of par-

titioning this image space into regions, and identifying each region with a meaningful

perceptual category. Learning mechanisms in the brain presumably construct such

perceptual regions. Labeled training examples may be conceptualized as points sam-

pled from an ideal partition, providing partial information to a learner on what the

optimal perceptual boundaries should look like. In a very high dimensional space,

large number of labeled examples are required for reliable identification of these op-

timal boundaries. This phenomenon is also called the curse of dimensionality. A

natural question then is the following: How is the curse of dimensionality overcome

by the human brain ?

A key insight into this problem comes by considering the aspect of perceptual

invariance. Even though stimuli is high dimensional, the variability in the images

may be characterized by a low dimensional parameter space. For example, consider

the numerous instances of the digit 0 shown in Figure 1.1. These instances differ

from one another in the degree of slants, rotations, translations, or line thickness.

The set of digit 0 generated by varying these parameters forms a continuous, possibly

non-linear manifold (“surface”) in the stimulus space. This structure has much lower

dimensionality as compared to the stimulus space. Thus, examples for learning may

become available in a high-dimensional ambient space, but may truly all lie on a low

4

dimensional structure. This situation is depicted in Figure 1.3 where points sampled

from an underlying a 2-dimensional manifold are shown in a 3-dimensional ambient

space.

Figure 1.3: Examples for learning may be points on a low-dimensional manifold
embedded in a high-dimensional space.

As another example, consider speech production: the articulatory organs can be

modeled as a collection of tubes so that the space of speech sounds is parameterized

by lengths and widths of the tubes. However, the canonical representation of the raw

speech signal is very high-dimensional. In almost any imaginable source of meaningful

high-dimensional stimulus space, the space of configurations that are actually realized

truly occupies only a tiny portion of the total volume of possibilities available. Perhaps

it is possible to escape the curse of dimensionality because the intrinsic dimensionality,

or true volume of configurations, of stimuli happens to fortunately be small in natural

learning problems. Conversely, one is tempted to conjecture that a task can only be

naturally learnt if it has the above property.

Such considerations suggest a few things about the nature of the process of learn-

ing. Firstly, it might be meaningful to construct categorical regions taking the in-

trinsic low-dimensional perceptual structure into account. Figure 1.4 illustrates the

5

difference between intrinsic and the ambient distances in the stimulus space – the

notions of similarity given by the two can be radically different. The “correct” notion

of similarity is important for constructing the right perceptual boundaries.

Figure 1.4: Intrinsic and ambient distances may be very different

Note, also, that within such a framework, examples not labeled by a teacher (see

Figure 1.1) also have a very significant role to play for learning – even if we dont

know what categories they belong to, their collective presence can tell us about what

possible stimuli configurations we can encounter. With sufficient unlabeled exam-

ples(observation), it might be possible to learn from very few labeled examples (in-

struction). Clearly, the human perceptual apparatus is inundated with a constant

stream of acoustic utterances and visual imprints with no identifiable categorical

markers (plain observation). Only a small amount of instructive feedback seems to

be necessary for a child to learn the acoustic-to-phonetic mapping in any language and

to learn to seamlessly process visual information. One can argue that the dominant

mode of learning is semi-supervised.

6

In addition to its appeal in perception and cognition, semi-supervised learning

has a major engineering significance. In many domains, large amounts of cheaply

generated unlabeled examples can often be augmented to a small amount of expen-

sively labeled examples. For example, a search engine may crawl the web and collect

billions of documents. No amount of human resource is sufficient to process this ever-

growing collection of documents to identify their (categorical) content. In such cases,

semi-supervised learning technologies can be advantageously deployed.

The motivating question for this thesis, then, is as follows : How can the prior

knowledge of geometric structures encoded in unlabeled examples be incorporated in

algorithmic procedures for learning from examples ? In particular, what is an ap-

propriate mathematical and algorithmic framework for learning from both labeled and

unlabeled examples ?

This thesis develops families of algorithms for semi-supervised learning.

1.2 Learning from Examples

In this section, we introduce the classical paradigm of learning from examples, and

describe some key components of the mathematical and algorithmic framework which

this thesis will build on. We also setup the notation to be used throughout this

thesis. Additionally, an overview is provided on the central problems and techniques

in machine learning particularly relevant to this thesis.

1.2.1 Supervised Learning

This section discusses the standard mathematical framework for supervised learning.

We assume that stimuli or inputs shown to a learner may be represented by elements

of a set X , and categorical assignments or desired responses are elements of a set

7

Y . An unknown probability distribution P on the product space X × Y models

the variability in the input-output space. A sampling process from this distribution

generates a set D = {(xi, yi)}l
i=1 of training examples for the learner. This set

contains pairs (x, y) ∈ X × Y drawn i.i.d from the distribution P .

Within this setup, one may consider regression (where Y is continuous) or clas-

sification (where Y is a finite discrete set). Much of the subsequent discussion will

focus on the canonical machine learning task of binary classification where the set

Y = {−1,+1} and examples x ∈ Rd may correspondingly be identified as belonging

to positive or negative class. The goal of supervised learning is to use the training

data D to construct a function f : X 7→ {−1,+1}. This function is constructed

by a learning algorithm A that selects a suitable function from a hypothesis space of

functions H, based on some goodness criterion that typically involves a loss function

V measured on the training data D.

Loss Functions : A loss function V (f(x), y) measures the cost of predicting

f(x) when the true prediction is y. Table 1.1 lists and Figure 1.5 shows different loss

functions utilized for regression and classification.

Table 1.1: Loss functions shown in Figure 1.5
Regression V (f(x), y) Classification V (f(x), y)
Absolute |y − f(x)| zero-one θ(yf(x))

Square (y − f(x))2 Square (1 − yf(x))2

ǫ-insensitive max[|y − f(x)| − ǫ, 0] Hinge max[1 − yf(x), 0]

sqr ǫ-insensitive max[|y − f(x)| − ǫ, 0]2 sqr Hinge max[1 − yf(x), 0]2

For binary classification, the most natural loss function is the zero-one step func-

tion V (f(x), y) = θ(yf(x)) which incurs a loss of 1 when the predicted class and true

class do not match (yf(x) < 0) and 0 otherwise. In practice, classification algorithms

actually use convex loss functions that upper bound the zero-one loss. Convexity

8

leads to tractable training objective functions. For classification with the hinge loss,

large positive values of yf(x) are interpreted as confident classifications, and linear

penalty is incurred when this value falls below 1. Within various choices for convex

loss functions, some such as squared hinge loss happen to also be differentiable.

Figure 1.5: Typical Loss Functions for Learning

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
0

0.5

1

1.5

2

2.5

3

3.5

4

Regression Loss Functions

y−f(x)

lo
ss

Square
Square ε−insensitive

Absolute

ε−insensitive

−2 −1 0 1 2 3 4
0

1

2

3

4

5

6

7

8

9

Classification Loss Functions

yf(x)

lo
ss

Square

Square Hinge

Hinge

zero−one

9

Risk Minimization : Given a hypothesis space H, a loss function V , and training

data D, the goal of learning may be described as finding the function g⋆ ∈ H that

incurs minimum expected loss R[f] over the entire space X × Y :

g∗ = argmin
f∈H

R[f] = argmin
f∈H

∫

X×Y
V (f(x), y)dP(x, y)

However, this minimization cannot be performed since the probability distribution P

is unknown. A natural learning algorithm might replace the above objective function

with the average empirical loss Remp[f] over the training data D = {(xi, yi)}l
i=1,

and find the function f∗ ∈ H that minimizes this estimate :

f∗ = argmin
f∈H

Remp[f] = argmin
f∈H

1

l

l∑

i=1

V (f(xi), yi)

This induction principle, called the Empirical Risk Minimization (ERM) principle,

has been well studied in learning theory. Statistical learning-theoretic questions have

been asked about two desirable requirements of the learnt function f∗ : (1) In order

for f∗ to be predictive, the average empirical loss Remp[f
∗] and true expected loss

R[f∗] must be close so that empirical loss can be trusted as a true reflection of

the performance over the entire space. This is the requirement of generalization.

(2) The expected loss of f∗ must be close to the expected loss of g∗, the function

in the hypothesis space that has the best performance. This is the requirement of

consistency.

Another consideration is the ill-posedness of ERM. An ill-posed problem fails to

satisfy one of the following criteria for well-posedness : (1) Existence of a solution,

(2) Uniqueness of the solution (3) Stability of the solution (continuous dependence on

the data). It is easy to exhibit an undesirable solution that minimizes empirical loss :

10

A rote learner that reproduces labels on training data and predicts 0 elsewhere. For

unique, stable and useful solutions, it turns out that we need to impose constraints

on the hypothesis space.

The critical insight arising from such considerations, paraphrased from [97], is

the following : For successful generalization from a small set of training examples,

one has to look for the optimal relationship between the amount of training data, the

quality of the approximation of the data by the function chosen from the hypothesis

space, and a measure of capacity of the hypothesis space H.

This insight is closely related to the Occam’s Razor principle (“the simplest ex-

planation is the best”), Minimum Description Length, and Bayesian paradigms that

relate capacity of hypothesis spaces to prior beliefs, and the principle of Structural

Risk minimization that imposes a hierarchical structure on a rich hypothesis class

based on notions of capacity.

In this thesis, we are concerned with the implementation of the above key insight,

by the following scheme, known as the method of Tiknonov Regularization [94]:

f∗ = argmin
f∈H

Remp[f] + γΩ[f] (1.1)

Given a certain amount of training data, the quality of the approximation of the data

by a function f is measured by the empirical loss Remp[f] (with respect to some

loss function V), and the capacity of the hypothesis space is measured indirectly

via a penalty function Ω that measures the complexity of functions in the hypothesis

space. The regularization parameter γ is a real number that is used to trade off data-fit

and function complexity. H is a space of real valued functions that are thresholded

for binary classification. Note that the above method is equivalent (via Lagrange

11

multipliers) to Ivanov Regularization:

argmin
f∈H

Remp[f] subject to: Ω[f] < γ̃

where we minimize empirical loss over a subset of H with limited complexity.

Successful implementation of regularization depends critically on the hypothesis

space H and the penalty function Ω.

Let us construct a list of desirable properties of a hypothesis space for learning by

regularization:

1. Rich Function Space : H : X 7→ R must be a real-valued function space

over X. It is natural to endow H with a Hilbert space structure. A general-

purpose learner needs to be capable of learning tasks where the underlying true

dependency may be highly complex. We require H to contain functions that

can well-approximate complex target functions (e.g., hypothesis space dense in

an L2 space of functions). This requirement is not in conflict with the assertion

that hypothesis spaces need to be constrained for successful generalization, once

we formulate a notion of complexity on this space and use it in the regularization

tradeoff.

2. Defined at all Points : Evaluation of empirical losses involve evaluating

functions f at arbitrary examples x ∈ X in the training set (since P is truly

unknown, the support of the data is not known apriori). Thus, f(x) needs to

exist for all x ∈ X . This innocuous property is not shared by many familiar

functions (e.g f(t) = 1/t is not defined at t = 0) and function spaces. For

example, the Hilbert space of square-integrable functions L2 actually contains

equivalence classes of functions differing on sets of measure zero.

12

3. “Truthful” Convergence : Suppose f∗ is the function learnt with data D,

and g∗ is the best function that can be learnt in the hypothesis space. A basic

requirement is that if f∗ converges to g∗ (it is natural to define convergence in

terms of the norm defined by inner product in the Hilbert space) as the amount

of data increases, convergence must be pointwise, i.e., for any x ∈ X , the value

f∗(x) converges to the value g∗(x). This requirement allows f∗(x) to be used

to predict the value of the true dependency at all points x.

This requirement can be rephrased as follows : If two functions f, g ∈ H are

close in the sense of distance derived from the inner product defined in the

Hilbert space H, then for all x ∈ X , f(x) is close to g(x).

A more technical rephrasal of the above is in terms of requiring the evaluation

function at x defined by Ex[f] = f(x), that maps functions to their values at

x, to be a continuous map.

4. Complexity control : Given a suitable function space H, we need to define a

penalty function Ω[f] that measures the complexity of f ∈ H. Given the Hilbert

space structure, it is natural to define this penalty function via the norm of the

function, i.e, Ω[f] = ‖f‖H.

5. Tractable Optimization : Lastly, we require that once we have collected

training data, constructed our function space, and chosen suitable loss functions,

the optimization problem of learning by regularization, can indeed be tractably

solved for a large class of learning problems.

It is remarkable that there exist function spaces called Reproducing Kernel Hilbert

Spaces that satisfy these requirements, as implications of a simple definition. Con-

sequently, they have found widespread use in statistics and machine learning. A

13

number of popular algorithms such as Support vector machines, Regularized least

squares, Ridge regression, splines, Radial basis functions etc arise out of the powerful

framework of regularization in RKHS.

Our focus in this thesis will be on two popular approaches : Support vector

machines and Regularized least squares. These are discussed in Section 1.2.4.

1.2.2 Reproducing Kernel Hilbert Spaces

This section is a tutorial overview of Reproducing Kernel Hilbert Spaces (RKHS)[12].

We recall some basic properties of RKHS and develop some intuition as to why they

are useful.

RKHS as Hilbert Spaces with a nice property: An RKHS H is a Hilbert

space of functions, i.e., a vector space of functions f : X 7→ R endowed with an inner

product 〈., .〉H such that in the associated norm ‖.‖H, H forms a complete metric

space.

Additionally, an RKHS has a nice property : If two functions f, g ∈ H are close

(i.e ‖f − g‖H is small), then their values f(x), g(x) are close at all points x ∈ X .

A formal way of stating this property is in terms of continuity of evaluation func-

tionals. Consider a point x ∈ X. The evaluation functional Ex : H 7→ R is defined

by the map Ex[f] = f(x), i.e., the functional maps functions to their values at point

x. The above property follows from the statement that evaluational functionals at

all points in X , are continuous on H.

The Reproducing Property: The “reproducing” property arises out of an im-

portant property of the inner product expressed by the Riesz Representation Theorem.

To state this theorem, we first recall the meaning of a linear functional. A linear func-

tional L : E 7→ R on a euclidean space E associates a real number L[e] with every

14

vector e ∈ E in such a way that L[α1e1 + α2e2] = α1L[e1] + α2L[e2] for all vectors

e1, e2 ∈ E and real numbers α1, α2. It is easy to see that for a fixed vector u ∈ E,

the functional L[e] = 〈u, e〉 defined via the inner product is a linear functional on

E. The Reisz Representation Theorem simply states the converse: Every continuous

linear functional L may be represented as an inner product, i.e., there exists a vector

u ∈ E such that L[e] = 〈u, e〉 ∀e ∈ E. The element u is called the representer of L.

Since the evaluation functional Ex is a linear continuous functional on H, the

Reisz representation theorem guarantees the existence of its representer kx ∈ H such

that the following property holds ∀f ∈ H:

Ex[f] = 〈kx, f〉H = f(x) (1.2)

Since taking the inner product of f with kx produces the value of f at x, this property

is often called the reproducing property. the reproducing property also shows that

RKHS functions are pointwise defined.

Kernels: We have seen that the definition of RKHS implies existence of real

valued functions kx ∈ H : X 7→ R that are representers of the evaluation functional

at x. With any RKHS, one may associate a function K : X × X 7→ R defined

as the following map K(x,z) = 〈kx, kz〉H. This function is called the Kernel of

the RKHS. Using the reproducing property, one may see that K(x,z) = kx(z) =

kz(x) = K(z,x) is a symmetric function. In subsequent discussion, we may use

Kx(.) or K(x, .) or kx(.) to denote the representer of evaluation at x.

At this point, one might ask the following question : If for a Hilbert space H,

there is a function K : X × X 7→ R such that K(x, .) ∈ H and ∀f ∈ H 〈f,Kx〉 =

f(x), then is it an RKHS, i.e., are all evaluation functionals Ex,x ∈ X continuous?

The answer is yes, and is easily argued from the observation that ∀x ∈ X ,∀f ∈

15

H |Ex[f]| = |f(x)| = |〈f,Kx〉| ≤ ‖f‖H‖Kx‖H = ‖f‖H
√

K(x,x) where the last

fast is the Cauchy-Schwarz inequality.

Additionally, one can confirm from the same argument that convergence in the

RKHS norm implies pointwise convergence: ∀x ∈ X ,∃Mx ∈ R+ such that |f(x) −

g(x)| ≤Mx‖f−g‖H. Here, Mx =
√

K(x,x). Thus, if f converges to g in the RKHS

norm, then for all x ∈ X , f(x) converges to g(x).

We see that the definition of RKHS directly allows us to satisfy the desirable

requirements of pointwise-definition and “truthful” convergence.

We now develop a characterization of RKHS in terms of positive definite functions.

Reproducing Kernels are positive definite functions: A function K : X ×

X 7→ R is positive definite if for any collection of points, i.e x1,x2, ...,xn ∈ X , the

n × n gram matrix G defined as Gij = K(xi,xj) is a positive definite matrix, i.e.,

∀α ∈ Rn αTGα ≥ 0.

A reproducing kernel is a positive definite function. This can be easily seen

through the reproducing property. Given any α ∈ Rn, x1,x2, ...,xn ∈ X , con-

sider the function f(.) =
∑n

i=1 αiKxi(.). Then f ∈ H and ‖f‖H = 〈f, f〉H =

〈∑n
i=1 αiKxi ,

∑n
i=1 αiKxi〉H = αTGα ≥ 0.

Positive definite functions are Reproducing Kernels: The theorem below

completes a remarkable characterization of RKHS in terms of positive definite func-

tions:

Theorem 1.2.1 (Moore-Aronszajn). If K : X×X 7→ R is a positive definite function,

then there exists a unique RKHS whose reproducing kernel is K. This RKHS is simply

the completion of the linear span of the kernel functions K(x, .) endowed with the

16

following inner product :

〈
n∑

i=1

αiK(xi, .),
m∑

j=1

βjK(zj , .)〉 =
n∑

i=1

m∑

j=1

αiβjK(xi,zj)

In subsequent discussion, we use the notation of HK for RKHS characterized by

the kernel function K and denote the RKHS norm ‖f‖H as ‖f‖K .

The following positive definite functions have been extensively used as kernels in

Regularization algorithms in RKHS : (here, x, y ∈ Rd)

K(x,z) = xT y Linear Kernels

K(x,z) = exp(−γ‖x − z‖2) Gaussian Kernels

K(x,z) = (xT z + 1)d Polynomial Kernels

Kernels as inner products in feature spaces: Positive definite kernels are

fundamentally related to inner-product spaces. The kernel is considered as an inner

product in a high-dimensional feature space F to which X is non-linearly mapped

via a “feature map”.

This characterization can be made precise by the following proposition.

Proposition A function K : X × X is a positive definite function if and only if

there exists a mapping φ : X 7→ F such that

∀x,z ∈ X : K(x,z) = 〈φ(x), φ(z)〉F

If K : X × X is a reproducing kernel, one can use the Moore-Aronszajn theorem

to produce the feature map φ : x 7→ K(x, .) and identify the feature space F with

the RKHS H. This map may be interpreted as turning each point x into a function

17

K(x, .) which encodes similarity of x with all other points in the space. Conversely,

given a feature space mapping defining the kernel function as above, one can establish

positive definiteness based on non-negativity of the norm in the feature space : Given

a gram matrix G obtained by evaluating the kernel on points {xi}n
i=1, it is easy to

show that ∀α ∈ Rn αTGα = ‖∑n
i=1 αiφ(xi)‖F ≥ 0.

Note that the positive definiteness of the kernel function is necessary and sufficient

for the existence of such a feature map. The Mercer’s theorem, discussed below, is

often used to exhibit a feature map, even though the conditions of the theorem are

sufficient but not necessary for a feature map to exist.

Integral Operators and Mercer Space Viewpoint: Here we discuss another

view of RKHS.

Suppose X is a finite space i.e X = {x1, ...,xn}. Then the kernel function K :

X × X 7→ R has a finite n × n gram matrix defined as Gij = K(xi,xj) which

is positive-definite symmetric matrix. Consider the eigenvalue decomposition of the

gram matrix : G = UDUT . Then, D = diag(λ1, λ2, ..., λn) is a diagonal matrix

of eigenvalues of G given by λ1 ≥ λ2, ...,≥ λn ≥ 0 and U = [u1...un] is an n × n

orthonormal matrix. Denote ui(j) = Uji be the jth component of the ith eigenvector.

Consider a feature map φ : X 7→ Rn given by ψ(xi) = (
√
λ1u1(i), ...,

√
λnun(i)).

Then, the dot product in this feature space can easily be shown to be 〈ψ(xi), ψ(xj)〉 =

K(xi,xj) =
∑n

k=1 λkuk(i)uk(j). Thus, the feature map takes xi to coordinates in a

feature space given by the ith element of the eigenvectors scaled by the square root

of corresponding eigenvalues.

Analogously, let X be a compact subset of Rd, and let ν be a measure on X

supported on all of X, and let K further be continuous. Here, instead of considering

eigensystems of a gram matrix, we consider the integral operator LK : L2(X , ν) 7→

18

L2(X , ν) defined as :

LK [f](t) =

∫

X
K(s, t)f(s)dν(s)

and study its eigensystem LK [f] = λf (the compactness of X , and symmetry and

positive definiteness of the kernel, result in this integral operator to be compact,

self-adjoint, positive, and therefore, possessing a discrete spectrum). If {φj}∞j=1

are eigenfunctions of the integral operator with eigenvalue {λj}∞j=1, Mercer’s Theo-

rem [77] says that the kernel function can be expanded as a uniformly convergent series

K(x, y) =
∑∞

i=1 λiφi(x)φi(y). One may define a Mercer feature map ψ : X 7→ l2

given by

ψ(x) = (
√

λ1φ1(x),
√

λ2φ2(x), ...)

and interpret the kernel function as providing the inner product in this feature space.

Consider functions in the span of the eigenfunctions of the kernel,

{f(x) =
∑

i

ciφi(x)} = wTψ(x)}

where wi = ci√
λi

. This space can be shown to be the RKHS associated with the

kernel, when restricted to ‖f‖K < ∞, where the norm may be defined via the the

following inner product : 〈∑i ciφi(x),
∑

i diφi(x)〉K =
∑

i
cidi
λi

i.e ‖∑i ciφi(x)‖2
K =

∑

i
c2i
λi

= wTw. One can check that the reproducing property holds, and that the

RKHS defined via the kernel eigenfunctions is the same as the one defined in the

Moore-Aronszajn theorem and is independent of the measure ν [38].

When the kernel is strictly positive definite, and all the infinite eigenvalues {λj}∞j=1

are strictly positive, the RKHS is dense in L2(X, ν). The gaussian kernel, for instance,

defines a dense RKHS and provides a rich hypothesis space for learning.

19

RKHS norm as Smoothness Penalty: We now suggest intuitive connections

between the RKHS norm ‖f‖2
K and the complexity of f in terms of its smoothness.

In particular, a large class of kernels can be associated with regularization operators

P of so that the RKHS norm ‖f‖2
K = ‖Pf‖2, where ‖Pf‖2 is a direct L2 penalty on

large derivatives of f1. Here, we consider some examples:

Linear Kernels : Suppose we choose the linear kernel on X ⊂ Rd : K(x,z) = xT z.

Consider a function in the RKHS defined by this kernel :

f(x) =
m∑

i=1

αiK(x,xi) =
m∑

i=1

αix
T
i x = (

m∑

i=1

αix
T
i)x = wT x

where w =
∑m

i=1 αixi is the weight vector of the linear function. Thus functions in

the RKHS are linear functions f(x) = wT x. The norm of this function is given by :

‖f‖2
K =

m∑

i=1

αiαjx
T
i xj = (

m∑

i=1

αixi)
T (

m∑

i=1

αixi) = wTw

Thus, the measure of complexity of linear functions is the magnitude of the weight

vector, which intuitively is a penalty on smoothness because for f(x) = wT x, wTw =

(∇f)T (∇f) where ∇f is the gradient of f .

For classification, there is another interpretation of such a penalty in terms of mar-

gin of separation between a classification hyperplanes and point clouds. Consider a

collection of points belonging to two classes D = {xi, yi}l
i=1,xi ∈ Rd, yi ∈ {−1,+1}.

The distance of a point from the hyperplane {x ∈ Rd : wT x = 0} is given by

|wT xi|
‖w‖ . Let d(w;D) be the distance of the hyperplane w from the nearest point in

the set D, i.e, d(w;D) = minxi

|wT xi|
‖w‖ . Note that the set of weight vectors with the

1. This connection is crystallized by identifying Kernels as Greens functions of regularization
operators, see [77].

20

same direction but different magnitudes {αw|α ∈ Rw ∈ Rd,wTw = 1} forms an

equivalence class whose elements define the same hyperplane. Given a weight vec-

tor, one can choose a canonical weight vector from its equivalence class such that

minxi|wT xi| = 1. Then, d(w;D) = 1
‖w‖ . The support vector machine algorithm

finds the weight vector that maximizes d(w;D) or equivalently minimizes wTw sub-

ject to the condition that w separate the two classes. This optimal separating hyper-

plane separates the two classes with maximum margin.

Gaussian Kernels : The RKHS associated with the Gaussian kernel K(x,z) =

exp(−γ‖x − z‖2) can be shown to correspond to two equivalent regularization op-

erators P , such that ‖f‖2
K = ‖Pf‖2 =

∫
dx
∑

m
σ2m

m!2m (Omf(x))2 where O2m =

△m, O2m+1 = ∇△m, with △ as the laplacian operator and ∇ as the gradient oper-

ator. Also, an equivalent representation of P in fourier space is :

‖f‖2
K = ‖Pf‖2 =

∫

Rd
|f̃(ω)|2 exp(

−σ2‖ω‖2

2
)dω

where f̃(ω) is the fourier transform of f(x). Thus the RKHS norm corresponds to a

particular measure of variation in f in terms of magnitudes of its derivatives or high

frequency components.

1.2.3 Representer Theorem

Once a kernel function K, or equivalently the associated RKHS HK is chosen, the

regularization problem may be written as :

f∗ = argmin
f∈HK

Remp[f] + γ‖f‖2
K (1.3)

21

The remarkable representer theorem shows that the minimizer of this problem has a

particular form involving a finite number of variables. Thus, what began as possibly

infinite dimensional optimization problem over a function space, is reduced to a finite

dimensional problem providing passage to a suite of tractable algorithms.

Theorem 1.2.2. Representer Theorem : Let Remp[f] be an empirical loss mea-

sure over training data D = {(xi, yi)}l
i=1 of a function f . Then each minimizer

f⋆ ∈ HK of the regularized risk

Remp[D] + γ‖f‖2
HK

(1.4)

admits a representation of the form f(x) =
∑l

i=1 αiK(x,xi)

Note that Remp might be the empirical average loss of some loss function V . This

theorem, however, holds more generally and allows for arbitrary (even non-additive)

loss functions, so long as it involves only point evaluations of a function on the training

data.

Proof. Decompose any f ∈ HK into a part contained in the span of kernel functions

k(x1, .), . . . , k(xl, .), and an orthogonal component:

f(x) = f||(x) + f⊥(x) =
l∑

i=1

αiK(x,xi) + f⊥(x) (1.5)

where f⊥ ∈ HK and < f⊥, k(xi, .) >HK
= 0. When evaluated on data, the reproduc-

ing property leads to the observation that f(xi) = f||(xi) ∀1 ≤ i ≤ l:

22

f(xi) = f||(xi) + f⊥(xi)

= <
l∑

i=1

αiK(xj , .), K(xi, .) > + < f⊥, K(xi, .) >HK

=
l∑

j=1

αiK(xj ,xi)

Since f⊥ only increases the norm, and the minimizer must have f⊥ = 0 i.e the

minimizer admit a representation f(x) =
∑l+u

i=1 αiK(x,xi).

Taking this form of the minimizer, plugging into the optimization problem, one

can convert the original problem into a finite-dimensional problem of finding the

coefficients αi. We demonstrate this for two algorithms in the next section.

1.2.4 Algorithms : RLS and SVM

We now use the representer theorem to demonstrate solutions of optimization prob-

lems of the following form :

f∗ = argmin
f∈HK

1

l

l∑

i=1

V (f(xi), yi) + γ‖f‖2
H (1.6)

We focus on two classification algorithms where (1) V is the squared loss leading

to Regularized Least Squares algorithm, and (2) V is the hinge loss leading to the

Support Vector Machine. These loss functions are shown in Figure 1.5.

23

Regularized Least Squares

The Regularized Least Squares algorithm is a fully supervised method where we solve:

min
f∈HK

1

l

l∑

i=1

(yi − f(xi))
2 + γ‖f‖2

K (1.7)

The classical Representer Theorem can be used to show that the solution is of the

following form:

f⋆(x) =
l∑

i=1

α⋆
iK(x,xi) (1.8)

Substituting this form in the problem above, we arrive at following convex differ-

entiable objective function of the l-dimensional variable α = [α1 . . . αl]
T :

α∗ = argmin
1

l
(Y −Kα)T (Y −Kα) + γαTKα (1.9)

where K is the l × l gram matrix Kij = K(xi,xj) and Y is the label vector Y =

[y1 . . . yl]
T .

The derivative of the objective function vanishes at the minimizer :

1

l
(Y −Kα∗)T (−K) + γKα∗ = 0

which leads to the following solution.

α∗ = (K + γlI)−1Y (1.10)

24

Support Vector Machines

Here we outline the SVM approach to binary classification problems. For SVMs, the

following problem is solved :

min
f∈HK

1

l

l∑

i=1

(1 − yif(xi))+ + γ‖f‖2
K

where the hinge loss is defined as: (1 − yf(x))+ = max(0, 1 − yf(x)) and the labels

yi ∈ {−1,+1}.

Again, the solution is given by:

f⋆(x) =
l∑

i=1

α⋆
iK(x,xi) (1.11)

Following SVM expositions, the above problem can be equivalently written as:

min
f∈HK ,ξi∈R

1

l

l∑

i=1

ξi + γ‖f‖2
K (1.12)

subject to : yif(xi) ≥ 1 − ξi i = 1, . . . , l

ξi ≥ 0 i = 1, . . . , l

Using the Lagrange multipliers technique, and benefiting from strong duality, the

above problem has a simpler quadratic dual program in the Lagrange multipliers

β = [β1, . . . , βl]
T ∈ Rl:

25

β⋆ = max
β∈Rl

l∑

i=1

βi −
1

2
βTQβ (1.13)

subject to :
l∑

i=1

yiβi = 0

0 ≤ βi ≤
1

l
i = 1, . . . , l

where the equality constraint arises due to an unregularized bias term that is often

added to the sum in Eqn (1.11), and the following notation is used :

Y = diag(y1, y2, ..., yl)

Q = Y

(
K

2γ

)

Y

α⋆ =
Y β⋆

2γ
(1.14)

Here again, K is the gram matrix over labeled points. SVM practitioners may

be familiar with a slightly different parameterization involving the C parameter :

C = 1
2γl is the weight on the hinge loss term (instead of using a weight γ on the norm

term in the optimization problem). The C parameter appears as the upper bound

(instead of 1
l) on the values of β in the quadratic program. For additional details on

the derivation and alternative formulations of SVMs, see [77].

In the context of this thesis, we make the following note regarding SVMs. Though

the traditional presentation of SVMs follows a dual approach, this is not strictly

necessary. For instance, if the squared hinge loss is used as the loss function, instead

of passing to the dual, one can directly approach the problem in the primal and solve

the optimization using primal techniques such as Newton’s method or its variants.

26

Unlike the hinge loss, the squared hinge loss is differentiable and more amenable to

unconstrained primal approaches. For recent work on primal SVM formulations, see

[23, 62].

1.2.5 Unsupervised Learning

Unsupervised learning algorithms, broadly speaking, attempt to extract some useful

structure from a set of unlabeled training examples D = {xi}u
i=1. An important

problem in this category is that of clustering where a set of objects need to be par-

titioned into clusters, such that objects within a cluster are similar, and objects in

different clusters are dissimilar (based on some notion of similarity). In this thesis,

we will be concerned with a family of clustering algorithms based on spectral cuts on

graph representations of data.

Another significant unsupervised learning problem is that of data representation

and dimensionality reduction. Such problems arise in many current applications that

generate very high dimensional data. In most such applications, more compact low-

dimensional representations of the data may be found without losing much informa-

tion. A very general setup of this problem is when data resides on a low-dimensional

manifold embedded in a high-dimensional ambient space. Such a structure may exist

in processes generating high dimensional data, but possesses few degrees of freedom.

Below we discuss spectral algorithms that construct low-dimensional representation

of data generated from an underlying manifold.

Spectral Clustering

Consider a set U = {xi}u
i=1 of u points that need to be partitioned into two clusters.

Also given is a u × u similarity matrix W so that Wij is a non-negative measure

27

of similarity between the objects xi and xj . One may consider this information as

a weighted, undirected, graph whose vertices are data points and whose edges are

weighted by similarity (Wij = 0 if no there is no edge between xi,xj). An optimal

partitioning puts similar objects in the same cluster and dissimilar objects in different

clusters. Consider an indicator vector q ∈ {−1,+1}u that defines a partitioning of

the vertices into two sets U(q,−) = {xi ∈ U |q(i) = −1} and U(q,+) = {xi ∈

U |q(i) = 1}. Then with every such partitioning, one can associate the following cost

that measures the total similarity of pairs of points belonging to different clusters :

J(q) =
∑

xi∈U(q,−)
xj∈U(q,+)

Wij =
1

4

∑

ij

Wij [qi − qj]
2

Let D = diag(d1, ..., du) be a diagonal matrix where di =
∑u

j=1Wij be the degree of

vertex xi. Then the above quantity may be written as :

J(q) =
1

4

∑

ij

Wij [qi − qj]
2

=
1

2
qT (D −W)q

=
1

2
qTLq (1.15)

where L is the Graph Laplacian is defined as the matrix L = D −W . Note that the

constant indicator vector of all-ones or all-minus-ones gives a trivial partition. The

Graph Min-Cut problem is to find a non-trivial partition indicator vector q such that

J(q) is minimized. Min-cut is easily solved in polynomial time but there is no control

on the sizes of the two clusters obtained.

To get a balanced cut, so that the two clusters U(q,−) and U(q,+) are of the same

size, one can add the constraint (assume the number of objects u is even)
∑

i qi = 0

28

or qT ⊥ 1 where 1 is a u-dimensional vector of ones.

However, this constraint makes the problem NP-complete.

A relaxation of the indicator vectors from q ∈ {−1,+1}u to q ∈ Ru leads to an

elegant solution. We need to further impose the condition that qT q = 1 to avoid

reducing cost by simply downscaling values of q. Thus the problem becomes :

q∗ = argmin
q∈Ru: qT q=1, q⊥1

qTLq

We note some simple properties of the Graph Laplacian that provide the solution

to this problem.

1. L is a symmetric positive-semidefinite matrix. Symmetry is clear by the defi-

nition of L; positive definiteness can be seen from the observation the for any

x ∈ Ru, xTLx =
∑

ij Wij [xi − xj]
2 ≥ 0.

2. q1 = 1 is the first eigenvector of L with eigenvalue 0. This can be seen by

observing that L1 = (D −W)1 = D −D = 0.

3. The second eigenvector q2 (the so called Fiedler vector) is the minimizer of

1.2.5. This can be seen by applying the Courant-Fischer theorem that gives a

variational characterization of eigenvalues of a symmetric matrix (say A): The

kth eigenvector of A is given by

qk = argmin
q⊥q1,q2,..qk−1

qT q=1

qTAq

and the kth eigenvalue λk is the value of the quadratic form at the minimum.

In our case, the orthogonality to 1 constraint easily fits this theorem since 1 is

the first eigenvector of L.

29

Algorithm : The spectral clustering algorithm is simply the following : Given

a set of u unlabeled points and a u × u similarity matrix W , construct the graph

laplacian L = D−W whereD is a diagonal matrixDii =
∑

iWij . Compute its second

eigenvector q2 ∈ Ru. The clustering is given by the sign of q2 (after thresholding so

that cluster sizes are balanced; the objective function is invariant under additions of

a constant to q).

Extensions of this basic algorithm have been proposed that involve other objective

functions that differ in the way they balance cluster sizes or intra and inter-cluster

similarities. These include the Ratio Cut method [52], Normalized Cuts [80] and

MinMaxCut [41]. For a tutorial overview, see [101].

Note that the solution of spectral clustering is a bi-partitioning of the set {xi}u
i=1.

The partitioning indicator function is only defined on this set. Consequently, spectral

clustering cannot deal with a new test example that needs to be assigned to its cluster.

This is the problem of out-of-sample extension in spectral clustering.

Manifold Learning

Among many goals of manifold learning algorithms, we focus on the problem of re-

covering a low dimensional representation of high dimensional data sampled from an

underlying low dimensional manifold M. Algorithmic approaches to this problem

attempt to construct a map from this high dimensional data into a single global coor-

dinate system of lower dimensionality that optimally preserves geometric relationships

between points on the manifold. Ideally, the lower dimensions correspond to, or al-

low the identification of the intrinsic degrees of freedom in the the data generating

process.

Figure 1.6 shows what this might mean : Points on a 2-dimensional manifold

30

embedded in 3-dimensions (left panel) may be mapped by a manifold learner to a

2-dimensional space (right panel). Here, the points are laid out as they would be if

the manifold was “unfolded”. The intrinsic distance relationships are preserved by

the map.

In such a situation, classical linear techniques like principal component analy-

sis (PCA) and multi-dimensional scaling may map ambiently close, but intrinsically

faraway points, to nearby points in their embeddings. This creates distortions in

the local and global geometry of the data. PCA involves projecting data onto di-

rections of maximum variance using top eigenvectors of the data covariance matrix.

MDS projects data to a low-dimensional space where pairwise ambient distances are

best preserved. These methods work best when the underlying manifold is a linear

subspace of the high-dimensional ambient space.

Figure 1.6: Manifold Learning

Figure 1.7: Graph Approximation to a Manifold

31

Non-linear manifold learning techniques have recently been proposed that over-

come such shortcomings. We discuss Isomap [56], Locally Linear Embedding [76]

and Laplacian Eigenmaps [4] briefly. When given a data set {xi}u
i=1, these methods

begin by constructing a nearest neighbor graph G(V,E). This graph serves as an

approximation to the true manifold since locally the ambient distance may be a good

estimate of the intrinsic distance. The vertices V of this graph are data points; an

edge (xi,xj) ∈ E if the data points xi and xj are among the nearest neighbors on

one another; and the edges may have weights specified by a matrix Wij (= 0 if no

edge between xi,xj). Figure 1.7 shows a graph approximation to a manifold.

Isomap : This method applies classical multidimensional scaling on approxima-

tions of intrinsic geodesic distances between pairs of points. These estimates are made

by computing the shortest path distances in the graph G (whose edges weights are

the ambient distances), using e.g Dijkstra’s algorithm. MDS then constructs a map,

preserving pairwise shortest path distances, to a low-dimensional coordinate system

that represents the global structure of the data. However, the requirement of com-

putation of all pairwise distances makes this algorithm somewhat computationally

expensive.

Locally Linear Embedding (LLE) : The objective of this algorithm is to re-

cover the global non-linear structure from locally linear approximations to the man-

ifold. Pairwise distance computation for all points is not required. The intuition of

the algorithm is that a point and its nearest neighbors span a locally linear space on

the manifold, so that each point can be linearly reconstructed in the span of its neigh-

bors. The algorithm first finds the linear coefficients that minimize a reconstruction

cost function, and then uses these coefficients to reconstruct low-dimensional coordi-

nates. This involves solving a constrained least squares problem followed by a sparse

eigenvalue problem.

32

Laplacian Eigenmaps : This algorithm looks for optimal embeddings in the

sense of best preserving locality. Given the u points in Rn, consider embedding the

graph into an m-dimensional space where m < n. Let the new coordinates of the

ith point be fi. Then, locality may be best preserved by minimizing
∑u

i,j=1 ‖fi −

fj‖2Wij = trace(FLFT) over the m×u matrix F whose columns are f1, .., fu. Here,

L is the graph laplacian. The matrix of eigenvectors corresponding to the lowest

eigenvalues of the generalized eigenvalue problem Lf = λDf provide the optimal Y .

This method is very closely related to spectral clustering.

For the case of manifold learning, the graph laplacian L, makes an interesting

correspondence with the continuous Laplace-Beltrami operator L on a manifold M

which defines a measure of smoothness SM with respect to the manifold:

SM =

∫

M
‖∇Mf‖2 =

∫

M
fL[f]

where ∇Mf is the gradient of a function f : M ⊂ Rn 7→ R on the manifold,

defined at any point x ∈ M as the vector in the tangent space Tx at x, such that

the directional derivative df(v) along any direction v ∈ Tx in the tangent space is

given by df(v) = 〈∇Mf, v〉M. The above functional has a discrete approximation to a

smoothness functional SG on the neighborhood graph defined by the Graph Laplacian:

SG =
∑u

i=1(fi − fj)
2Wij = fTLf where f = (f1, ..., fu) ∈ Ru is a function defined

on the graph vertices, fi specifying the value of the function on vertex xi.

As in Spectral clustering, here too we have the problem of out-of-sample extension:

how should a novel unseen point be mapped ?

33

1.3 Semi-supervised Learning in Pictures

We start by providing some intuitions for semi-supervised learning. These intuitions

are demonstrated in pictures (Figures 1.8, 1.9 and 1.10).

Consider first the two labeled points (marked “+” and “-”) in the left panel of

Figure 1.8. Our intuition may suggest that a simple linear separator such as the one

shown in Figure 1.8, is an optimal choice for a classifier. Indeed, considerable effort

in learning theory has been invested into deriving optimality properties for such a

classification boundary.

Figure 1.8: Circle

Figure 1.9: Curve

The right panel however shows that the two labeled points are in fact located on

two concentric circles of unlabeled data. Looking at the right panel, it becomes clear

that the circular boundary is more natural given unlabeled data.

34

+ ?
_ + ?

_

Figure 1.10: Blobs

Consider now the left panel in Figure 1.9. In the absence of unlabeled data the

black dot (marked “?”) is likely to be classified as blue (marked “-”). The unlabeled

data, however, makes classifying it as red (marked “+”) seem much more reasonable.

A third example is shown in Figure 1.10. In the left panel, the unlabeled point

may be classified as blue (-) to agree with its nearest neighbor. However, unlabeled

data shown as grey clusters in the right panel changes our belief.

These examples show how the geometry of unlabeled data may radically change

our intuition about classifier boundaries.

Recall now the standard setting of learning from examples. Given a pattern space

X , there is a probability distribution P on X × R according to which examples are

generated for function learning. Labeled examples are (x, y) pairs drawn according

to P . Unlabeled examples are simply x ∈ X sampled according to the marginal

distribution PX of P .

As we have seen, the knowledge of the marginal PX can be exploited for better

function learning (e.g., in classification or regression tasks). On the other hand, if

there is no identifiable relation between PX and the conditional P(y|x), the knowledge

of PX is unlikely to be of use.

35

Two possible connections between PX and P(y|x) can be stated as the following

important assumptions:

1. Manifold Assumption: Suppose that the marginal probability distribution

underlying the data is supported on a low-dimensional manifold. Then the

family of conditional distributions P (y|x) is smooth, as a function of x, with

respect to the underlying structure of the manifold.

2. Cluster assumption: The probability distribution P is such that points in

the same “cluster” are likely to have the same label.

We see that the data shown in Figures 1.8 and 1.9 satisfy the manifold assumption.

The picture in Figure 1.10 is meant to show Gaussian clusters. The concentric

circles in Figure 1.8 can also be thought as “clusters”, although such clusters are highly

non-Gaussian and have an interesting geometric structure. One may conjecture that

many clusters in real-world datasets have such non-Gaussian structures.

In this thesis, we seek to translate the above intuitions into algoritmic frameworks

by implementing manifold and cluster assumptions within Kernel-based Regulariza-

tion Methods.

1.4 Contributions of this Thesis

In Chapter 2, we outline a graph-based framework called Manifold Regularization for

incorporating unlabeled data in a wide variety of Kernel methods, motivated primarily

by the manifold assumption. This framework naturally resolves the problem of of

out-of-sample extension in Graph transduction, Spectral Clustering and graph-based

manifold learning methods. We provide an interpretation in terms of globally defined

36

data-dependent kernels. This chapter is drawn from the following published papers

[7, 86, 81] coauthored with Partha Niyogi and Misha Belkin.

In Chapter 3, we revisit an early framework proposed by V. Vapnik [96] that

leads to algorithms such as the Transductive SVM (TSVM) where one optimizes also

over unknown labels explicitly to enforce the cluster assumption. TSVMs lead to a

non-convex optimization problem and show variable empirical performance on real

world datasets. Our contribution is two-fold: we implement a global optimization

framework based on a Branch and Bound algorithm to benchmark current implemen-

tations and investigate the severity of their susceptibility to local minima. It turns

out that the global solution can return extremely good performance where practical

implementations fail completely. However, our Branch-and-bound method is only ap-

plicable to small datasets. We develop a deterministic annealing heuristic that shows

some resistance to suboptimal local minima. This chapter is drawn from the following

published papers [84, 27] coauthored with Sathiya Keerthi and Olivier Chapelle.

In Chapter 4, we propose simple regularization algorithms that arise from the

following idea first introduced in [18]: If multiple redundant representations of the

data is available, then classifiers developed on each should agree in their predictions

on the unlabeled examples. A consensus maximization term is added to a joint

regularization functional. This framework leads to algorithms that are applicable

when different sources of information (features) need to be combined.

In Chapter 5, we study the issue of sparsifying the Manifold Regularization solu-

tion with the goal of making training and testing more effecient. Instead of optimizing

the objective over an entire RKHS, we restrict our attention to a smalled subspace.

This subspace can be constructed in various ways: random subset selection, greedy

incremental methods (matching pursuit), l1 regularization etc. We empirically show

that a straightforward application of sparse methods does not lead to satisfactory

37

performance. Tightening the Manifold regularizer through a sigmoid function or in-

troducing extra degrees of freedom is necessary to recover effective sparse solutions.

In Chapter 6, we address an important special case of the algorithms developed

in this thesis. On many applications, linear classifiers are strongly preferred due to

their performance and simplicity. We develop semi-supervised linear classifiers that

can handle millions of examples and features by exploiting the sparsity of the data-

matrix. This chapter is drawn from [85] co-authored with Sathiya Keerthi.

CHAPTER 2

MANIFOLD REGULARIZATION: A GEOMETRIC

FRAMEWORK

In this chapter, we present an algorithmic framework for semi-supervised inference

based on geometric properties of probability distributions. Our approach brings to-

gether Laplacian-based spectral techniques, regularization with kernel methods, and

algorithms for manifold learning. This framework provides a natural semi-supervised

extension for kernel methods and resolves the problem of out-of-sample inference in

graph-based transduction. We discuss an interpretation in terms of a family of globally

defined data-dependent kernels and also address unsupervised learning (clustering and

data representation) within the same framework. Our algorithms effectively exploit

both manifold and cluster assumptions to demonstrate state-of-the-art performance

on various classification tasks.

2.1 Introduction

In this chapter, we introduce a framework for data-dependent regularization that

exploits the geometry of the probability distribution. While this framework allows us

to approach the full range of learning problems from unsupervised to supervised, we

focus on the problem of semi-supervised learning.

The problem of learning from labeled and unlabeled data (semi-supervised and

transductive learning) has attracted considerable attention in recent years. Some

recently proposed methods include Transductive SVM [97, 57], Cotraining [18], and

a variety of graph based methods [17, 29, 91, 65, 89, 108, 110, 112, 63, 59, 2]. We

also note the regularization based techniques of [37] and [20]. The latter reference

38

39

is closest in spirit to the intuitions in this chapter. We postpone the discussion of

related algorithms and various connections until Section 2.6.

As discussed in the previous chapter, the idea of regularization has a rich mathe-

matical history going back to [94], where it is used for solving ill-posed inverse prob-

lems. Regularization is a key idea in the theory of splines (e.g., [103]) and is widely

used in machine learning (e.g., [47]). Recall that many machine learning algorithms,

including Support Vector Machines, can be interpreted as instances of regularization.

Our framework exploits the geometry of the probability distribution that generates

the data and incorporates it as an additional regularization term. Hence, there are

two regularization terms — one controlling the complexity of the classifier in the

ambient space and the other controlling the complexity as measured by the geometry

of the distribution. We consider in some detail the special case where this probability

distribution is supported on a submanifold of the ambient space.

The points below highlight several aspects of the current chapter:

1. Our general framework brings together three distinct concepts that have re-

ceived some independent recent attention in machine learning:

i. The first of these is the technology of spectral graph theory (e.g., see [31]) that

has been applied to a wide range of clustering and classification tasks over the

last two decades. Such methods typically reduce to certain eigenvalue problems.

ii. The second is the geometric point of view embodied in a class of algorithms

that can be termed as manifold learning1. These methods attempt to use the

geometry of the probability distribution by assuming that its support has the

geometric structure of a Riemannian manifold.

iii. The third important conceptual framework is the set of ideas surround-

1. see http://www.cse.msu.edu/∼lawhiu/manifold/ for a list of references

40

ing regularization in Reproducing Kernel Hilbert Spaces (RKHS). This leads

to the class of kernel based algorithms for classification and regression (e.g.,

see [78, 103, 47]).

We show how these ideas can be brought together in a coherent and natural way

to incorporate geometric structure in a kernel based regularization framework.

As far as we know, these ideas have not been unified in a similar fashion before.

2. This general framework allows us to develop algorithms spanning the range from

unsupervised to fully supervised learning.

In this chapter, we primarily focus on the semi-supervised setting and present

the following algorithms: the Laplacian Regularized Least Squares (hereafter

LapRLS) and the Laplacian Support Vector Machines (hereafter LapSVM).

These are natural extensions of RLS and SVM respectively. In addition, several

recently proposed transductive methods (e.g., [111, 5]) are also seen to be special

cases of this general approach.

In the absence of labeled examples our framework results in new algorithms

for unsupervised learning, which can be used both for data representation and

clustering. These algorithms are related to Spectral Clustering and Laplacian

Eigenmaps [8].

3. We elaborate on the RKHS foundations of our algorithms and show how geo-

metric knowledge of the probability distribution may be incorporated in such a

setting through an additional regularization penalty. In particular, a new Repre-

senter theorem provides a functional form of the solution when the distribution

is known; its empirical version involves an expansion over labeled and unlabeled

points when the distribution is unknown. These Representer theorems provide

41

the basis for our algorithms.

4. Our framework with an ambiently defined RKHS and the associated Repre-

senter theorems result in a natural out-of-sample extension from the data set

(labeled and unlabeled) to novel examples. This is in contrast to the variety

of purely graph based approaches that have been considered in the last few

years. Such graph based approaches work in a transductive setting and do not

naturally extend to the semi-supervised case where novel test examples need to

be classified (predicted). Also see [9, 21] for some recent related work on out-

of-sample extensions. We also note that a method similar to our regularized

spectral clustering algorithm has been independently proposed in the context

of graph inference in [99].

5. We re-interpret our framework in terms of a family of data-dependent norms

on Reproducing Kernel Hilbert Spaces (RKHS). These norms allow us to warp

the structure of a base RKHS to reflect the underlying geometry of the data.

We derive explicit formulas for the corresponding new kernels. Standard super-

vised learning with this new kernel effectively perform semi-supervised learning.

The solution is expressed in terms of the classical standard Representer theo-

rem involving the modified kernel functions centered only the labeled points.

This interpretation expands the algorithmic scope of our framework: all kernel

methods (such as Support Vector Regression, one-class SVMs etc) can utilize

this construction. See [83] for the construction of semi-supervised Gaussian

processes in this manner.

42

2.2 Incorporating Geometry in Regularization

Recall the standard framework of learning from examples. There is a probability

distribution P on X × ℜ according to which examples are generated for function

learning. Labeled examples are (x, y) pairs generated according to P . Unlabeled

examples are simply x ∈ X drawn according to the marginal distribution PX of P .

One might hope that knowledge of the marginal PX can be exploited for better

function learning (e.g. in classification or regression tasks). Of course, if there is no

identifiable relation between PX and the conditional P(y|x), the knowledge of PX is

unlikely to be of much use.

Therefore, we will make a specific assumption about the connection between the

marginal and the conditional distributions. We will assume that if two points x1,x2 ∈

X are close in the intrinsic geometry of PX , then the conditional distributions P(y|x1)

and P(y|x2) are similar. In other words, the conditional probability distribution

P(y|x) varies smoothly along the geodesics in the intrinsic geometry of PX .

We utilize these geometric intuitions to extend an established framework for func-

tion learning. A number of popular algorithms such as SVM, Ridge regression, splines,

Radial Basis Functions may be broadly interpreted as regularization algorithms with

different empirical cost functions and complexity measures in an appropriately chosen

Reproducing Kernel Hilbert Space (RKHS).

For a Mercer kernelK : X×X → R, there is an associated RKHS HK of functions

X → ℜ with the corresponding norm ‖ ‖K . Given a set of labeled examples (xi, yi),

i = 1, . . . , l the standard framework estimates an unknown function by minimizing

f∗ = argmin
f∈HK

1

l

l∑

i=1

V (xi, yi, f) + γ‖f‖2
K (2.1)

43

where V is some loss function, such as squared loss (yi − f(xi))
2 for RLS or the

hinge loss function max [0, 1 − yif(xi)] for SVM. Penalizing the RKHS norm im-

poses smoothness conditions on possible solutions. The classical Representer Theo-

rem states that the solution to this minimization problem exists in HK and can be

written as

f∗(x) =
l∑

i=1

αiK(xi,x) (2.2)

Therefore, the problem is reduced to optimizing over the finite dimensional space of

coefficients αi, which is the algorithmic basis for SVM, Regularized Least Squares

and other regression and classification schemes.

We first consider the case when the marginal distribution is already known.

2.2.1 Marginal PX is known

Our goal is to extend this framework by incorporating additional information about

the geometric structure of the marginal PX . We would like to ensure that the solution

is smooth with respect to both the ambient space and the marginal distribution PX .

To achieve that, we introduce an additional regularizer:

f∗ = argmin
f∈HK

1

l

l∑

i=1

V (xi, yi, f) + γA‖f‖2
K + γI‖f‖2

I (2.3)

where ‖f‖2
I is an appropriate penalty term that should reflect the intrinsic structure

of PX . Intuitively, ‖f‖2
I is a smoothness penalty corresponding to the probability

distribution. For example, if the probability distribution is supported on a low-

dimensional manifold, ‖f‖2
I may penalize f along that manifold. γA controls the

complexity of the function in the ambient space while γI controls the complexity of

the function in the intrinsic geometry of PX . It turns out that one can derive an

44

explicit functional form for the solution f∗ as shown in the following theorem.

Theorem 2.2.1. Assume that the intrinsic regularization term is given by:

‖f‖2
I =

∫

X
fDfdPX

where D is a bounded operator from the RKHS associated to K to L2(PX). Then

the solution f∗ to the optimization problem in Eqn. 2.3 above exists and admits the

following representation:

f∗(x) =
l∑

i=1

αiK(xi,x) +

∫

X
α(z)K(x,z) dPX (z) (2.4)

where M = supp{PX } is the support of the marginal PX .

For a proof we refer the reader to [7].

The Representer Theorem above allows us to express the solution f∗ directly in

terms of the labeled data, the (ambient) kernel K, and the marginal PX . If PX

is unknown, we see that the solution may be expressed in terms of an empirical

estimate of PX . Depending on the nature of this estimate, different approximations

to the solution may be developed. In the next section, we consider a particular

approximation scheme that leads to a simple algorithmic framework for learning from

labeled and unlabeled data.

2.2.2 Marginal PX Unknown

In most applications the marginal PX is not known. Therefore we must attempt to

get empirical estimates of PX and ‖ ‖I . Note that in order to get such empirical

estimates it is sufficient to have unlabeled examples.

45

A case of particular recent interest (e.g., see [76, 92, 8, 43, 34] for a discussion

on dimensionality reduction) is when the support of PX is a compact submanifold

M ⊂ Rn. In that case, one natural choice for ‖f‖I is
∫

x∈M ‖∇Mf‖2 dPX(x), where

∇M is the gradient (see, e.g., [42] for an introduction to differential geometry) of f

along the manifold M and the integral is taken over the marginal distribution.

The optimization problem becomes

f∗ = argmin
f∈HK

1

l

l∑

i=1

V (xi, yi, f) + γA‖f‖2
K + γI

∫

x∈M
‖∇Mf‖2 dPX(x)

The term
∫

x∈M ‖∇Mf‖2 dPX (x) may be approximated on the basis of labeled and

unlabeled data using the graph Laplacian associated to the data. While an extended

discussion of these issues goes beyond the scope of this work, it can be shown that

under certain conditions choosing exponential weights for the adjacency graph leads

to convergence of the graph Laplacian to the Laplace-Beltrami operator ∆M (or its

weighted version) on the manifold. See the Remarks below and [1, 67, 6, 33, 54] for

details.

Thus, given a set of l labeled examples {(xi, yi)}l
i=1 and a set of u unlabeled

examples {xj}j=l+u
j=l+1 , we consider the following optimization problem :

f∗ = argmin
f∈HK

1

l

l∑

i=1

V (xi, yi, f) + γA‖f‖2
K +

γI

(u+ l)2

l+u∑

i,j=1

(f(xi) − f(xj))
2Wij

= argmin
f∈HK

1

l

l∑

i=1

V (xi, yi, f) + γA‖f‖2
K +

γI

(u+ l)2
fTLf (2.5)

where Wij are edge weights in the data adjacency graph, f = [f(x1), . . . , f(xl+u)]T ,

and L is the graph Laplacian given by L = D −W . Here, the diagonal matrix D

46

is given by Dii =
∑l+u

j=1Wij . The normalizing coefficient 1
(u+l)2

is the natural scale

factor for the empirical estimate of the Laplace operator. We note than on a sparse

adjacency graph it may be replaced by
∑l+u

i,j=1Wij .

The following version of the Representer Theorem shows that the minimizer has

an expansion in terms of both labeled and unlabeled examples and is a key to our

algorithms.

Theorem 2.2.2. The minimizer of optimization problem 2.5 admits an expansion

f∗(x) =
l+u∑

i=1

αiK(xi,x) (2.6)

in terms of the labeled and unlabeled examples.

The proof is a variation of the standard orthogonality argument and is presented

in Section 2.2.3.

Remark 1: Several natural choices of ‖ ‖I exist. Some examples are:

1. Iterated Laplacians (∆M)k. Differential operators (∆M)k and their linear com-

binations provide a natural family of smoothness penalties.

Recall that the Laplace-Beltrami operator ∆M can be defined as the divergence

of the gradient vector field ∆Mf = div(∇Mf) and is characterized by the

equality
∫

x∈M
f(x)∆Mf(x)dµ =

∫

x∈M
‖∇Mf(x)‖2 dµ

where µ is the standard measure (uniform distribution) on the Riemannian

manifold. If µ is taken to be non-uniform, then the corresponding notion is the

weighted Laplace-Beltrami operator (e.g., [51]).

47

2. Heat semigroup e−t∆M is a family of smoothing operators corresponding to

the process of diffusion (Brownian motion) on the manifold. One can take

‖f‖2
I =

∫

M f et∆M(f)dPX . We note that for small values of t the corresponding

Green’s function (the heat kernel of M), which is close to a Gaussian in the

geodesic coordinates, can also be approximated by a sharp Gaussian in the

ambient space.

3. Squared norm of the Hessian (cf. [43]). While the Hessian H(f) (the matrix

of second derivatives of f) generally depends on the coordinate system, it can

be shown that the Frobenius norm (the sum of squared eigenvalues) of H is

the same in any geodesic coordinate system and hence is invariantly defined for

a Riemannian manifold M. Using the Frobenius norm of H as a regularizer

presents an intriguing generalization of thin-plate splines. We also note that

∆M(f) = tr(H(f)).

Remark 2: Why not just use the intrinsic regularizer? Using ambient and intrinsic

regularizers jointly is important for the following reasons:

1. We do not usually have access to M or the true underlying marginal distribu-

tion, just to data points sampled from it. Therefore regularization with respect

only to the sampled manifold is ill-posed. By including an ambient term, the

problem becomes well-posed.

2. There may be situations when regularization with respect to the ambient space

yields a better solution, e.g., when the manifold assumption does not hold (or

holds to a lesser degree). Being able to trade off these two regularizers may be

important in practice.

Remark 3: While we use the graph Laplacian for simplicity, the normalized Lapla-

48

cian

L̃ = D−1/2LD−1/2

can be used interchangeably in all our formulas. Using L̃ instead of L provides

certain theoretical guarantees (see [102]) and seems to perform as well or better in

many practical tasks. In fact, we use L̃ in all our empirical studies in Section 2.7.

The relation of L̃ to the weighted Laplace-Beltrami operator was discussed in [67].

Remark 4: Note that a global kernel K restricted to M (denoted by KM) is also

a kernel defined on M with an associated RKHS HM of functions M → R. While

this might suggest

‖f‖I = ‖fM‖KM

(fM is f restricted to M) as a reasonable choice for ‖f‖I , it turns out, that for

the minimizer f∗ of the corresponding optimization problem we get ‖f∗‖I = ‖f∗‖K ,

yielding the same solution as standard regularization, although with a different pa-

rameter γ. This observation follows from the restriction properties of RKHS. There-

fore it is impossible to have an out-of-sample extension without two different measures

of smoothness. On the other hand, a different ambient kernel restricted to M can

potentially serve as the intrinsic regularization term. For example, a sharp Gaussian

kernel can be used as an approximation to the heat kernel on M. Thus one (sharper)

kernel may be used in conjunction with unlabeled data to estimate the heat kernel

on M and a wider kernel for inference.

2.2.3 The Representer Theorem for the Empirical Case

In the case when M is unknown and sampled via labeled and unlabeled examples, the

Laplace-Beltrami operator on M may be approximated by the Laplacian of the data

49

adjacency graph (see [1, 20] for some discussion). A regularizer based on the graph

Laplacian leads to the optimization problem posed in Eqn. 2.5. We now provide

a proof of Theorem 2.2.2 which states that the solution to this problem admits a

representation in terms of an expansion over labeled and unlabeled points. The proof

is based on a simple orthogonality argument (e.g., [78]).

Theorem 2.2.3. Any function f ∈ HK can be uniquely decomposed into a compo-

nent f|| in the linear subspace spanned by the kernel functions {K(xi, ·)}l+u
i=1, and a

component f⊥ orthogonal to it. Thus,

f = f|| + f⊥ =
l+u∑

i=1

αiK(xi, ·) + f⊥ (2.7)

By the reproducing property, as the following arguments show, the evaluation of

f on any data point xj , 1 ≤ j ≤ l + u is independent of the orthogonal component

f⊥ :

f(xj) = 〈f,K(xj , ·)〉 = 〈
l+u∑

i=1

αiK(xi, ·), K(xj , ·)〉 + 〈f⊥, K(xj , ·)〉 (2.8)

Since the second term vanishes, and 〈K(xi, ·), K(xj , ·)〉 = K(xi,xj), it follows that

f(xj) =
∑l+u

i=1 αiK(xi,xj). Thus, the empirical terms involving the loss function

and the intrinsic norm in the optimization problem in Eqn. 2.5 depend only on the

value of the coefficients {αi}l+u
i=1 and the gram matrix of the kernel function.

Indeed, since the orthogonal component only increases the norm of f in HK :

‖f‖2
K = ‖

l+u∑

i=1

αiK(xi, ·)‖2
K + ‖f⊥‖2

K ≥ ‖
l+u∑

i=1

αiK(xi, ·)‖2
K

It follows that the minimizer of problem 2.5 must have f⊥ = 0, and therefore admits

50

a representation f∗(·) =
∑l+u

i=1 αiK(xi, ·).

The simple form of the minimizer, given by this theorem, allows us to translate our

extrinsic and intrinsic regularization framework into optimization problems over the

finite dimensional space of coefficients {αi}l+u
i=1, and invoke the machinery of kernel

based algorithms. In the next section, we derive these algorithms, and explore their

connections to other related work.

2.3 Algorithms

We now discuss standard regularization algorithms (RLS and SVM) and present their

extensions (LapRLS and LapSVM respectively). These are obtained by solving the

optimization problems posed in Eqn. (2.5) for different choices of cost function V and

regularization parameters γA, γI . To fix notation, we assume we have l labeled exam-

ples {(xi, yi)}l
i=1 and u unlabeled examples {xj}j=l+u

j=l+1 . We use K interchangeably

to denote the kernel function or the Gram matrix.

2.3.1 Laplacian Regularized Least Squares (LapRLS)

The Laplacian Regularized Least Squares algorithm solves the optimization problem

in Eqn. (2.5) with the squared loss function:

min
f∈HK

1

l

l∑

i=1

(yi − f(xi))
2 + γA‖f‖2

K +
γI

(u+ l)2
fTLf

As before, the Representer Theorem can be used to show that the solution is an

expansion of kernel functions over both the labeled and the unlabeled data :

f⋆(x) =
l+u∑

i=1

α⋆
iK(x,xi) (2.9)

51

Substituting this form in the equation above, as before, we arrive at a convex

differentiable objective function of the l+ u-dimensional variable α = [α1 . . . αl+u]T :

α∗ = argmin
α∈Rl+u

1

l
(Y − JKα)T (Y − JKα) + γAαTKα +

γI

(u+ l)2
αTKLKα (2.10)

where K is the (l + u) × (l + u) Gram matrix over labeled and unlabeled points; Y

is an (l + u) dimensional label vector given by : Y = [y1, . . . , yl, 0, . . . , 0] and J is an

(l + u) × (l + u) diagonal matrix given by J = diag(1, . . . , 1, 0, . . . , 0) with the first l

diagonal entries as 1 and the rest 0.

The derivative of the objective function vanishes at the minimizer :

1

l
(Y − JKα)T (−JK) + (γAK +

γI l

(u+ l)2
KLK)α = 0 (2.11)

which leads to the following solution.

α∗ = (JK + γAlI +
γI l

(u+ l)2
LK)−1Y (2.12)

Note that when γI = 0, Eqn. (2.12) gives zero coefficients over unlabeled data,

and the coefficients over the labeled data are exactly those for standard RLS.

2.3.2 Laplacian Support Vector Machines

By including the intrinsic smoothness penalty term, we can extend SVMs by solving

the following problem:

min
f∈HK

1

l

l∑

i=1

(1 − yif(xi))+ + γA‖f‖2
K +

γI

(u+ l)2
fTLf (2.13)

52

By the representer theorem,as before, the solution to the problem above is given

by:

f⋆(x) =
l+u∑

i=1

α⋆
iK(x, xi) (2.14)

Often in SVM formulations, an unregularized bias term b is added to the above

form. Again, the primal problem can be easily seen to be the following:

min
α∈Rl+u,ξ∈Rl

1

l

l∑

i=1

ξi + γAαTKα +
γI

(u+ l)2
αTKLKα (2.15)

subject to : yi(
l+u∑

j=1

αjK(xi, xj) + b) ≥ 1 − ξi, i = 1, . . . , l

ξi ≥ 0 i = 1, . . . , l

Introducing the Lagrangian, with βi, ζi as Lagrange multipliers:

L(α, ξ, b,β, ζ) =
1

l

l∑

i=1

ξi +
1

2
αT (2γAK + 2

γA

(l + u)2
KLK)α (2.16)

−
l∑

i=1

βi(yi(
l+u∑

j=1

αjK(xi, xj) + b) − 1 + ξi) −
l∑

i=1

ζiξi

Passing to the dual requires the following steps:

53

∂L

∂b
= 0 =⇒

l∑

i=1

βiyi = 0 (2.17)

∂L

∂ξi
= 0 =⇒ 1

l
− βi − ζi = 0

=⇒ 0 ≤ βi ≤
1

l
(ξi, ζi are non-negative)

Using above identities, we formulate a reduced Lagrangian:

LR(α,β) =
1

2
αT (2γAK + 2

γI

(u+ l)2
KLK)α −

l∑

i=1

βi(yi

l+u∑

j=1

αjK(xi, xj) − 1)

=
1

2
αT (2γAK + 2

γI

(u+ l)2
KLK)α − αTKJTY β +

l∑

i=1

βi (2.18)

where J = [I 0] is an l× (l+ u) matrix with I as the l× l identity matrix (assuming

the first l points are labeled) and Y = diag(y1, y2, ..., yl).

Taking derivative of the reduced Lagrangian with respect to α:

∂LR

∂α
= (2γAK + 2

γI

(u+ l)2
KLK)α −KJTY β

This implies:

α = (2γAI + 2
γI

(u+ l)2
LK)−1JTY β⋆ (2.19)

Note that the relationship between α and β is no longer as simple as the SVM

algorithm. In particular, the (l + u) expansion coefficients are obtained by solving a

linear system involving the l dual variables that will appear in the SVM dual problem.

Substituting back in the reduced Lagrangian we get:

54

β∗ = max
β∈Rl

l∑

i=1

βi −
1

2
βTQβ (2.20)

subject to :
l∑

i=1

βiyi = 0

0 ≤ βi ≤
1

l
i = 1, . . . , l (2.21)

where

Q = Y JK(2γAI + 2
γI

(l + u)2
LK)−1JTY

Laplacian SVMs can be implemented by using a standard SVM solver with the

quadratic form induced by the above matrix, and using the solution to obtain the

expansion coefficients by solving the linear system in Eqn. (2.19).

Note that when γI = 0, the SVM QP and Eqns. (2.20,2.19), give zero expansion

coefficients over the unlabeled data. The expansion coefficients over the labeled data

and the Q matrix are as in standard SVM, in this case.

The Manifold Regularization algorithms are summarized in the Table 2.1.

Efficiency Issues:

It is worth noting that our algorithms compute the inverse of a dense Gram matrix

which leads to O((l+u)3) complexity. This may be impractical for large datasets. In

the case of linear kernels, instead of using Eqn. 2.6, we can directly write f⋆(x) = wT x

and solve for the weight vector w using a primal optimization method. This is much

more efficient when the data is low-dimensional. For highly sparse datasets, e.g. in

text categorization problems, effective conjugate gradient schemes can be utilized in

a large scale implementation. For the non-linear case, one may obtain approximate

55

Table 2.1: Manifold Regularization Algorithms

Input: l labeled examples {(xi, yi)}l
i=1, u unlabeled examples {xj}l+u

j=l+1
Output: Estimated function f : Rn → R

Step 1 � Construct data adjacency graph with (l + u) nodes using, e.g, k
nearest neighbors or a graph kernel. Choose edge weights Wij , e.g.

binary weights or heat kernel weights Wij = e−‖xi−xj‖2/4t.
Step 2 � Choose a kernel function K(x, y). Compute the Gram matrix Kij =

K(xi, xj).
Step 3 � Compute graph Laplacian matrix : L = D−W where D is a diagonal

matrix given by Dii =
∑l+u

j=1Wij . Construct a graph Regularier e.g.,

M = Lp.
Step 4 � Choose γA and γI .
Step 5 � Compute α∗ using Eqn. (2.12) for squared loss (Laplacian RLS)

or using Eqns. (2.20, 2.19) together with the SVM QP solver for soft
margin loss (Laplacian SVM). Equivalently, use the data-dependent
modified kernel in Eqn. 2.22 in a standard supervised RLS or SVM
(section 1.2.4) to compute α⋆.

Step 6 � Output function f∗(x) =
∑l+u

i=1 α
∗
iK(xi,x). If Eqn. 2.22 is used,

output the standard solution f∗(x) =
∑l

i=1 α
∗
i K̃(xi,x)

solutions (e.g. using greedy, matching pursuit techniques) where the optimization

problem is solved over the span of a small set of basis functions instead of using

the full representation in Eqn. 2.6. We investigate these directions in Chapter 5 and

Chapter 6. In section 2.7, we evaluate the empirical performance of our algorithms

with exact computations as outlined in Table 2.1 with non-linear kernels.

2.4 Data-dependent Kernels

Consider again the picture shown in Fig. 2.1(a). Shown in that figure are two classes

of data points in the plane (R2) such that all data points lie on one of two concentric

circles. This represents a two class pattern classification problem where each class is

56

identified with one of the circles. The decision boundary separating the two classes

is non-linear. Let us suppose we use the Gaussian (RBF) kernel K(x,z) = e
−‖x−z‖2

2σ2

which defines an RKHS space of functions H over the two-dimensional plane.

Figure 2.1: A binary classification problem : Classes (diamonds and circles) lie on
two concentric circles.

(a) two classes on
concentric circles (b) two labeled points

Suppose we are given a small number, l, of labeled example pairs (xi, yi) where

each xi ∈ R2 and yi ∈ {−1,+1}. Then, in order to learn a good classifier from the

labeled examples, one may solve the following regularization problem:

f = arg min
h∈H

1

l

l∑

i=1

V (h,xi, yi) + γ‖h‖2
H

where ‖h‖H is the norm of the function h in the RKHS and V is a loss function. By

the familiar representer theorem, recall that the solution can be expressed as:

f(x) =
l∑

i=1

αik(x, xi)

For illustrative purposes, we consider in Fig. 2.1(b) the case where l = 2, i.e., two

labeled examples (one positive and one negative) are provided to the learner. Then

the learned function would be a linear combination of two Gaussians, each centered

on one of the two data points. The contours (level sets) of the Gaussian centered

57

Figure 2.2: Contours of the Gaussian Kernel and the decision surface

(c) classifier learnt
in the RKHS

(a) gaussian kernel centered
on labeled point 1

(b) gaussian kernel centered
on labeled point 2

at each datapoint are shown in the Fig. 2(a),(b). Because the Gaussian kernel is

isotropic, it has a spherical symmetry. As a result, the decision surface is linear, as

shown in Fig. 2(c).

It is clear in our setting that the Gaussian with its spherical symmetry is an un-

fortunate choice for the kernel as it does not conform to the particular geometry of

the underlying classes, and is unable to provide a satisfactory decision surface. The

question we set for ourselves in this section is the following:

Can we define a kernel k̃ that is adapted to the geometry of the data distribution?

Such a kernel k̃ must have the property that (i) it is a valid Mercer kernel K̃ :

X × X → ℜ and therefore defines a new RKHS H̃. (ii) it implements our intuitions

about the geometry of the data. Our hope is to obtain an optimization problem over

this new RKHS H̃, given by:

g = arg min
h∈H̃

1

2

2∑

i=1

V (h,xi, yi) + ‖h‖2
H̃

58

whose solution g(x) =
∑2

i=1 αik̃(x,xi) should be appropriate for our setting.

Notice that g is still a linear combination of two (modified) kernel functions,

centered at the two data points in question. Yet, this solution must produce an

intuitive decision surface that separates the two circles such as in Fig. 2.1(a). The

form of such a Mercer kernel is not a-priori obvious for our picture.

In this section, we will show how to deform the original space to obtain a new

RKHS H̃ to satisfy our objectives, effectively reducing Manifold Regularization to

standard supervised learning but using a novel modified kernel. As before, the ge-

ometry of the underlying marginal distribution may be estimated from unlabeled

data and incorporated into the deformation procedure. The resulting new kernel k̃

can be computed explicitly in terms of unlabeled data. Working with only labeled

data in this new RKHS, we can use the full power of supervised kernel methods for

semi-supervised inference.

We highlight the following aspects of this construction:

1. As far as we know, we obtain the first truly data-dependent non-parametric

kernel for semi-supervised learning. Prior work on data dependent kernels may

be roughly classified into two categories: (a) choosing parameters for some

parametric family of kernels, and (b) defining a data dependent kernel on the

data points alone (transductive setting).

2. We discuss the basic theoretical properties of this kernel and establish that it

is a valid Mercer kernel and therefore defines an RKHS.

3. These developments allow a family of algorithms to be developed based on var-

ious choices of the original RKHS, deformation penalties, loss functions and

optimization strategies. In particular, standard SVM/RLS with the modified

kernel are equivalent to Laplacian SVM/RLS with the base kernel. One can use

59

this construction as a black box: simply deform a kernel and plug it into stan-

dard methods such as Support Vector Regression, One-Class SVMs, Gaussian

Processes and so on.

We now continue the discussion above and describe a general scheme for appro-

priately warping an RKHS.

2.5 Warping an RKHS using Point Cloud Norms

Before proceeding we discuss again the basic properties of RKHS relevant to this

section. Let X be a compact domain in a Euclidean space or a manifold. A complete

Hilbert space H of functions X → R, with inner product 〈·, ·〉H is a Reproducing

Kernel Hilbert Space if point evaluation functionals are bounded, i.e., for any x ∈

X , f ∈ H, there is a C, s.t.

|f(x)| ≤ C‖f‖H

A symmetric positive semidefinite kernel K(x,z) can then be constructed using

the Riesz representation theorem for the point evaluation functional:

f(x) = 〈f,K(x, ·)〉H K(x,z) = 〈K(x, ·), k(z, ·)〉H

We will now show how a very general procedure to deform the norm ‖ ‖H gives

a new RKHS H̃ whose kernel we will denote by k̃(x, z).

Let V be a linear space with a positive semi-definite inner product (quadratic

form) and let S : H → V be a bounded linear operator. We define H̃ to be the space

of functions from H with the modified inner product

〈f, g〉H̃ = 〈f, g〉H + 〈Sf, Sg〉V

60

Proposition 2.5.1. H̃ is a Reproducing Kernel Hilbert Space.

Proof. It is clear that H̃ is complete, since a Cauchy sequence in the modified

norm is also Cauchy in the original norm and therefore converges to an element of H.

For the same reason it is clear that point evaluations are bounded as |f(x)| ≤ C‖f‖H
implies that |f(x)| ≤ C‖f‖H̃.

We will be interested in the case when S and V depend on the data. We notice

that while Proposition 2.5.1 is very general, and holds for any choice of S and V , it

is not usually easy to connect the kernels k and k̃.

However, as we will show below, for a class of what may be termed “point-cloud

norms” this connection can be expressed explicitly.

Given the data points x1, . . . ,xn, let S : H → Rn be the evaluation map

S(f) = (f(x1), . . . , f(xn)). Denote f = (f(x1), . . . , f(xn)). The (semi-)norm on

Rn will be given by a symmetric positive semi-definite matrix M :

‖Sf‖2
V = f tM f

We will derive the exact form for k̃(x,z). Note that H̃ can be orthogonally decom-

posed as

H̃ = span
{

k̃(x1, ·), . . . , k̃(xn, ·)
}

⊕ H̃⊥

where H̃⊥ consists of functions vanishing at all data points. It is clear that for any

f ∈ H̃⊥, Sf = 0 and therefore 〈f, g〉H̃ = 〈f, g〉H for any function g in the space.

We therefore see that for any such f ∈ H̃⊥, we have

f(x) = 〈f, k̃(x, ·)〉H̃ (reproducing property in H̃)

= 〈f,K(x, ·)〉H (reproducing property in H)

= 〈f,K(x, ·)〉H̃ since f ∈ H̃⊥

61

Thus, for any f ∈ H̃⊥, we have 〈f,K(x, ·) − k̃(x, ·)〉H̃ = 0 or K(x, ·) − k̃(x, ·) ∈

(H̃⊥)⊥. In other words,

K(x, ·) − k̃(x, ·) ∈ span
{

(k̃(x1, ·), . . . , k̃(xn, ·)
}

On the other hand, for any xi ∈ X and f ∈ H̃⊥ from the definition of the inner

product on H̃ we see 〈K(xi, ·), f〉H̃ = 0. Thus, K(xi, .) ∈ (H̃⊥)⊥. Therefore, we see

that

span{K(xi, ·)}n
i=1 ⊆ span{(k̃(xi, ·)}n

i=1

Also decomposing, H = span {K(xi, ·)}n
i=1 ⊕H⊥, it is easy to check that k̃(xi, .) ∈

(H⊥)⊥ so that:

span{k̃(xi, ·)}n
i=1 ⊆ span{K(xi, ·)}n

i=1

Thus, the two spans are same and we conclude that

k̃(x, ·) = K(x, ·) +
∑

j

βj(x)K(xj , ·)

where the coefficients βj depend on x.

To find βj(x), we look at a system of linear equations generated by evaluating

K(xi, .) at x:

kxi(x) = 〈K(xi, .), k̃(x, ·)〉H̃
= 〈K(xi, .), K(x, ·) +

∑

j

βj(x)K(xj , ·)〉H̃

= 〈K(xi, .), K(x, ·) +
∑

j

βj(x)K(xj , ·)〉H + kxi

tMg

where kxi
= (K(xi,x1) . . . K(xi,xn))t and g is the vector given by the components

62

gk = K(x,xk) +
∑

j βj(x)K(xj ,xk). This formula provides the following system of

linear equations for the coefficients β(x) = (β1(x) . . . βn(x))T :

(I +MK)β(x) = −Mkx

where K is the matrix Kij = K(xi,xj) and kx, as before, denotes the vector

(K(x1,x) . . . K(xn,x))t.

Finally, we obtain the following explicit form for k̃:

Proposition 2.5.2. Reproducing kernel of H̃:

K̃(x,z) = K(x,z) − kt
x(I +MK)−1Mkz (2.22)

One can observe that the matrix (I + MK)−1M is symmetric. When M is in-

vertible, it equals (M−1 + K)−1 which is clearly symmetric. When M is singular,

one adds a small ridge term to M and then uses a continuity argument.

We see that modifying the RKHS with a point-cloud norm deforms the kernel

along a finite-dimensional subspace given by the data.

2.5.1 Choosing the Point Cloud Norm

The key issue is the choice of M , so that the deformation of the kernel induced by

the data-dependent norm, is motivated with respect to our intuitions about the data.

Such intuitions may be inspired by forms of prior knowledge (e.g, transformation

invariances), or, in the case of semi-supervised learning, by the form of the marginal

distribution as described by unlabeled data. As developed earlier in this chapter, we

utilize a graph regularizer based on the graph Laplacian associated to the point cloud.

63

Figure 2.3: Contours of the data-dependent modified Kernel

(c) classifier learnt
in the deformed RKHS

(a) deformed kernel centered
on labeled point 1

(b) deformed kernel centered
on labeled point 2

2.5.2 Back to Concentric Circles

The result of modifying the kernel by using the graph Laplacian for the particular

case of two circles2 is shown in Fig. 2.3.

In Fig. 2.3(a) and Fig. 2.3(b) we see level lines for modified kernels centered on

two points on smaller and larger circles respectively. We see that as expected the

kernel becomes extended along the circle. This distortion of the kernel reflects two

intuitions about the natural data: what may be termed “the manifold assumption”,

i.e. the notion that our regression/classification function is smooth with respect to

the underlying probability distribution and the related “cluster assumption” (see e.g

[30]), which suggests that classes form distinct “clusters” separated by low density

areas. The kernel, such as shown in Fig. 2.3, heavily penalizes changes along the

circle, while imposing little penalty on changes in the orthorgonal direction.

Finally, Fig. 2.3(c) shows the class boundary obtained using this new kernel.

2. Each consisting of 150 evenly spaced unlabeled points, with one labeled example

64

2.6 Related Work and Connections to Other Algorithms

In this section we survey various approaches to semi-supervised and transductive

learning and highlight connections of Manifold Regularization to other algorithms.

Transductive SVM (TSVM) [98, 58]: TSVMs are based on the following opti-

mization principle :

f∗ = argmin
f∈HK

yl+1,...yl+u

C

l∑

i=1

(1 − yif(xi))+ + C∗
l+u∑

i=l+1

(1 − yif(xi))+ + ‖f‖2
K (2.23)

which proposes a joint optimization of the SVM objective function over binary-valued

labels on the unlabeled data and functions in the RKHS. Here, C,C∗ are parameters

that control the relative hinge-loss over labeled and unlabeled sets. The joint opti-

mization is implemented in [58] by first using an inductive SVM to label the unlabeled

data and then iteratively solving SVM quadratic programs, at each step switching

labels to improve the objective function. However this procedure is susceptible to lo-

cal minima and requires an unknown, possibly large number of label switches before

converging. Note that even though TSVM were inspired by transductive inference,

they do provide an out-of-sample extension. We revisit TSVM style approaches in

detail in Chapter 3.

Semi-Supervised SVMs (S3VM) [11, 49]: S3VM incorporate unlabeled data

by including the minimum hinge-loss for the two choices of labels for each unlabeled

example, with the same objective as TSVMs. This is formulated as a mixed-integer

program for linear SVMs in [11] and is found to be intractable for large amounts of

unlabeled data. [49] reformulate this approach as a concave minimization problem

which is solved by a successive linear approximation algorithm. The presentation of

these algorithms is restricted to the linear case.

65

Measure-Based Regularization [20]: The conceptual framework of this work

is closest to our approach. The authors consider a gradient based regularizer that

penalizes variations of the function more in high density regions and less in low density

regions leading to the following optimization principle:

f∗ = argmin
f∈F

l∑

i=1

V (f(xi), yi) + γ

∫

X
〈∇f(x),∇f(x)〉p(x)dx (2.24)

where p is the density of the marginal distribution PX . The authors observe that it is

not straightforward to find a kernel for arbitrary densities p, whose associated RKHS

norm is
∫

〈∇f(x),∇f(x)〉p(x)dx

Thus, in the absence of a representer theorem, the authors propose to perform min-

imization of the regularized loss on a fixed set of basis functions chosen apriori, i.e,

F = {∑q
i=1 αiφi}. For the hinge loss, this paper derives an SVM quadratic program

in the coefficients {αi}q
i=1 whose Q matrix is calculated by computing q2 integrals

over gradients of the basis functions. However the algorithm does not demonstrate

performance improvements in real world experiments. It is also worth noting that

while [20] use the gradient ∇f(x) in the ambient space, we use the gradient over a

submanifold ∇Mf for penalizing the function. In a situation where the data truly

lies on or near a submanifold M, the difference between these two penalizers can be

significant since smoothness in the normal direction to the data manifold is irrelevant

to classification or regression.

Graph Based Approaches See, e.g., [17, 29, 91, 109, 111, 112, 63, 60, 5]:

A variety of graph based methods have been proposed for transductive inference.

However, these methods do not provide an out-of-sample extension. In [111], nearest

66

neighbor labeling for test examples is proposed once unlabeled examples have been

labeled by transductive learning. In [29], test points are approximately represented

as a linear combination of training and unlabeled points in the feature space induced

by the kernel. For Graph Regularization and Label Propagation see [90, 3, 111]. [90]

discusses the construction of a canonical family of graph regularizers based on the

graph Laplacian. [112] presents a non-parametric construction of graph regularizers.

Manifold regularization provides natural out-of-sample extensions to several graph

based approaches. These connections are summarized in Table 2.2.

We also note the recent work [40] on out-of-sample extensions for semi-supervised

learning where an induction formula is derived by assuming that the addition of a

test point to the graph does not change the transductive solution over the unlabeled

data.

Cotraining [19]: The Co-training algorithm was developed to integrate abun-

dance of unlabeled data with availability of multiple sources of information in do-

mains like web-page classification. Weak learners are trained on labeled examples

and their predictions on subsets of unlabeled examples are used to mutually expand

the training set. Note that this setting may not be applicable in several cases of

practical interest where one does not have access to multiple information sources.

Bayesian Techniques See e.g., [71, 79, 37]. An early application of semi-

supervised learning to Text classification appeared in [71] where a combination of

EM algorithm and Naive-Bayes classification is proposed to incorporate unlabeled

data. [79] provides a detailed overview of Bayesian frameworks for semi-supervised

learning. The recent work in [37] formulates a new information-theoretic principle

to develop a regularizer for conditional log-likelihood.

67

Table 2.2: Connections of Manifold Regularization to other algorithms
Parameters Corresponding algorithms (square loss or hinge loss)

γA ≥ 0 γI ≥ 0 Manifold Regularization
γA ≥ 0 γI = 0 Standard Regularization (RLS or SVM)
γA → 0 γI > 0 Out-of-sample extension for Graph Regularization

(RLS or SVM)
γA → 0 γI → 0 Out-of-sample extension for Label Propagation
γI ≫ γA (RLS or SVM)
γA → 0 γI = 0 Hard margin SVM or Interpolated RLS

2.7 Experiments

We performed experiments on synthetic and real world datasets. For detailed exper-

imental benchmark studies, we refer the reader to [25, 82, 87].

2.7.1 Visual Illustration of Ambient-Intrinsic Tradeoff

The two moons dataset is shown in Figure 2.4. The dataset contains 200 examples

with only 1 labeled example for each class. Also shown are the decision surfaces

of Laplacian SVM for increasing values of the intrinsic regularization parameter γI .

When γI = 0, Laplacian SVM disregards unlabeled data and returns the SVM de-

cision boundary which is fixed by the location of the two labeled points. As γI is

increased, the intrinsic regularizer incorporates unlabeled data and causes the decision

surface to appropriately adjust according to the geometry of the two classes.

In Figure 2.5, the best decision surfaces across a wide range of parameter settings

are also shown for SVM, Transductive SVM and Laplacian SVM. The figure demon-

strates how TSVM fails to find the optimal solution, probably since it gets stuck in

a local minimum (see Chapter 3). The Laplacian SVM decision boundary seems to

be intuitively most satisfying.

68

Figure 2.4: Laplacian SVM with RBF Kernels for various values of γI . Labeled points
are shown in color, other points are unlabeled.

−1 0 1 2

−1

0

1

2

 γ
A
 = 0.03125 γ

I
 = 0

SVM

−1 0 1 2

−1

0

1

2

Laplacian SVM

 γ
A
 = 0.03125 γ

I
 = 0.01

−1 0 1 2

−1

0

1

2

Laplacian SVM

 γ
A
 = 0.03125 γ

I
 = 1

Figure 2.5: Two Moons Dataset: Best decision surfaces using RBF kernels for SVM,
TSVM and Laplacian SVM. Labeled points are shown in color, other points are
unlabeled.

−1 0 1 2
−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5
SVM

−1 0 1 2
−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5
Transductive SVM

−1 0 1 2
−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5
Laplacian SVM

2.7.2 Spoken Letter Recognition

This experiment was performed on the Isolet database of letters of the English alpha-

bet spoken in isolation (available from the UCI machine learning repository). The

data set contains utterances of 150 subjects who spoke the name of each letter of the

English alphabet twice. The speakers are grouped into 5 sets of 30 speakers each,

referred to as isolet1 through isolet5. For the purposes of this experiment, we chose

to train on the first 30 speakers (isolet1) forming a training set of 1560 examples, and

69

test on isolet5 containing 1559 examples (1 utterance is missing in the database due

to poor recording). We considered the task of classifying the first 13 letters of the

English alphabet from the last 13. We considered 30 binary classification problems

corresponding to 30 splits of the training data where all 52 utterances of one speaker

were labeled and all the rest were left unlabeled. The test set is composed of entirely

new speakers, forming the separate group isolet5.

0 10 20 30

14

16

18

20

22

24

26

28

Labeled Speaker #

Er
ro

r R
at

e
(u

nl
ab

el
ed

 s
et

)

RLS vs LapRLS

RLS
LapRLS

0 10 20 30

15

20

25

30

35

40

Labeled Speaker #

Er
ro

r R
at

es
 (u

nl
ab

el
ed

 s
et

)

SVM vs TSVM vs LapSVM

SVM
TSVM
LapSVM

0 10 20 30

20

25

30

35

Labeled Speaker #

Er
ro

r R
at

es
 (t

es
t s

et
)

RLS vs LapRLS

RLS
LapRLS

0 10 20 30

20

25

30

35

40

Labeled Speaker #

Er
ro

r R
at

es
 (t

es
t s

et
)

SVM vs TSVM vs LapSVM

SVM
TSVM
LapSVM

Figure 2.6: Isolet Experiment - Error Rates at precision-recall break-even points of
30 binary classification problems

We chose to train with RBF kernels of width σ = 10 (this was the best value

among several settings with respect to 5-fold cross-validation error rates for the fully

supervised problem using standard SVM). For SVM and RLS we set γl = 0.05 (C =

10) (this was the best value among several settings with respect to mean error rates

over the 30 splits). For Laplacian RLS and Laplacian SVM we set γAl = γI l
(u+l)2

=

0.005.

70

15 20 25 30
15

20

25

30

Error Rate (Unlabeled)

Er
ro

r R
at

e
(T

es
t)

RLS

Experiment 1
Experiment 2

15 20 25 30
15

20

25

30

Error Rate (Unlabeled)

Er
ro

r R
at

e
(T

es
t)

LapRLS

Experiment 1
Experiment 2

15 20 25 30
15

20

25

30

Error Rate (Unlabeled)

Er
ro

r R
at

e
(T

es
t)

SVM

Experiment 1
Experiment 2

15 20 25 30
15

20

25

30

Error Rate (Unlabeled)
Er

ro
r R

at
e

(T
es

t)

LapSVM

Experiment 1
Experiment 2

Figure 2.7: Isolet Experiment - Error Rates at precision-recall break-even points on
Test set Versus Unlabeled Set. In Experiment 1, the training data comes from Isolet
1 and the test data comes from Isolet5; in Experiment 2, both training and test sets
come from Isolet1.

In Figures 2.6, we compare these algorithms. The following comments can be

made: (a) LapSVM and LapRLS make significant performance improvements over

inductive methods and TSVM, for predictions on unlabeled speakers that come from

the same group as the labeled speaker, over all choices of the labeled speaker. (b) On

Isolet5 which comprises of a separate group of speakers, performance improvements

are smaller but consistent over the choice of the labeled speaker. This can be expected

since there appears to be a systematic bias that affects all algorithms, in favor of

same-group speakers. To test this hypothesis, we performed another experiment in

which the training and test utterances are both drawn from Isolet1. Here, the second

utterance of each letter for each of the 30 speakers in Isolet1 was taken away to

form the test set containing 780 examples. The training set consisted of the first

71

utterances for each letter. As before, we considered 30 binary classification problems

arising when all utterances of one speaker are labeled and other training speakers are

left unlabeled. The scatter plots in Figure 2.7 confirm our hypothesis, and show high

correlation between in-sample and out-of-sample performance of our algorithms in

this experiment. It is encouraging to note performance improvements with unlabeled

data in Experiment 1 where the test data comes from a slightly different distribution.

This robustness is often desirable in real-world applications.

Table 2.3: Isolet: one-versus-rest multiclass error rates

Method SVM TSVM LapSVM RLS LapRLS
Error (unlabeled) 28.6 46.6 24.5 28.3 24.1

Error (test) 36.9 43.3 33.7 36.3 33.3

In Table 2.3 we report mean error rates over the 30 splits from one-vs-rest 26-class

experiments on this dataset. The parameters were held fixed as in the 2-class setting.

The failure of TSVM in producing reasonable results on this dataset has also been

observed in [60]. With LapSVM and LapRLS we obtain around 3 to 4% improvement

over their supervised counterparts.

2.7.3 Text Categorization

We performed Text Categorization experiments on the WebKB dataset which consists

of 1051 web pages collected from Computer Science department web-sites of various

universities. The task is to classify these web pages into two categories: course or non-

course. We considered learning classifiers using only textual content of the web pages,

ignoring link information. A bag-of-word vector space representation for documents

is built using the the top 3000 words (skipping HTML headers) having highest mutual

72

information with the class variable, followed by TFIDF mapping3. Feature vectors

are normalized to unit length. 9 documents were found to contain none of these words

and were removed from the dataset.

For the first experiment, we ran LapRLS and LapSVM in a transductive setting,

with 12 randomly labeled examples (3 course and 9 non-course) and the rest unla-

beled. In Table 2.4, we report the precision and error rates at the precision-recall

break-even point averaged over 100 realizations of the data, and include results re-

ported in [60] for Spectral Graph Transduction, and the Cotraining algorithm [19]

for comparison. We used 15 nearest neighbor graphs, weighted by cosine distances

and used iterated Laplacians of degree 3. For inductive methods, γAl was set to 0.01

for RLS and 1.00 for SVM. For LapRLS and LapSVM, γA was set as in inductive

methods, with γI l
(l+u)2

= 100γAl. These parameters were chosen based on a simple

grid search for best performance over the first 5 realizations of the data. Linear Ker-

nels and cosine distances were used since these have found wide-spread applications

in text classification problems, e.g., in [44].

Since the exact datasets on which these algorithms were run, somewhat differ in

preprocessing, preparation and experimental protocol, these results are only meant

to suggest that Manifold Regularization algorithms perform similar to state-of-the-

art methods for transductive inference in text classification problems. The following

comments can be made: (a) Transductive categorization with LapSVM and LapRLS

leads to significant improvements over inductive categorization with SVM and RLS.

(b) [60] reports 91.4% precision-recall breakeven point, and 4.6% error rate for TSVM.

Results for TSVM reported in the table were obtained when we ran the TSVM imple-

3. TFIDF stands for Term Frequency Inverse Document Frequency. It is a common document
preprocessing procedure, which combines the number of occurrences of a given term with the number
of documents containing it.

73

Table 2.4: Precision and Error Rates at the Precision-Recall Break-even Points of
supervised and transductive algorithms.

Method PRBEP Error

k-NN [60] 73.2 13.3
SGT [60] 86.2 6.2

Naive-Bayes [19] — 12.9
Cotraining [19] — 6.20

SVM 76.39 (5.6) 10.41 (2.5)

TSVM4 88.15 (1.0) 5.22 (0.5)
LapSVM 87.73 (2.3) 5.41 (1.0)

RLS 73.49 (6.2) 11.68 (2.7)
LapRLS 86.37 (3.1) 5.99 (1.4)

mentation using SVM-Light software on this particular dataset. The average training

time for TSVM was found to be more than 10 times slower than for LapSVM. (c) The

Co-training results were obtained on unseen test datasets utilizing additional hyper-

link information, which was excluded in our experiments. This additional information

is known to improve performance, as demonstrated in [60] and [19].

In the next experiment, we randomly split the WebKB data into a test set of 263

examples and a training set of 779 examples. We noted the performance of inductive

and semi-supervised classifiers on unlabeled and test sets as a function of the number

of labeled examples in the training set. The performance measure is the precision-

recall break-even point (PRBEP), averaged over 100 random data splits. Results are

presented in the top panel of Figure 2.8. The benefit of unlabeled data can be seen

by comparing the performance curves of inductive and semi-supervised classifiers.

We also performed experiments with different sizes of the training set, keeping a

randomly chosen test set of 263 examples. The bottom panel in Figure 2.8 presents the

quality of transduction and semi-supervised learning with Laplacian SVM (Laplacian

RLS performed similarly) as a function of the number of labeled examples for different

74

 2 4 8 16 32 64

60

65

70

75

80

85

Number of Labeled Examples

PR
BE

P

Performance of RLS, LapRLS

 2 4 8 16 32 64

60

65

70

75

80

85

Number of Labeled Examples

PR
BE

P

Performance of SVM, LapSVM

 2 4 8 16 32 64

80

82

84

86

88

Number of Labeled Examples

PR
BE

P

LapSVM performance (Unlabeled)

 2 4 8 16 32 64

78

80

82

84

86

Number of Labeled Examples

PR
BE

P

LapSVM performance (Test)

rls (U)
rls (T)
laprls (U)
laprls (T)

svm (U)
svm (T)
lapsvm (U)
lapsvm (T)

U=779−l
U=350
U=150

U=779−l
U=350
U=150

Figure 2.8: WebKb Text Classification Experiment : The top panel presents perfor-
mance in terms of precision-recall break-even points (PRBEP) of RLS,SVM,Laplacian
RLS and Laplacian SVM as a function of number of labeled examples, on Test (marked
as T) set and Unlabeled set (marked as U and of size 779-number of labeled exam-
ples). The bottom panel presents performance curves of Laplacian SVM for different
number of unlabeled points.

amounts of unlabeled data. We find that transduction improves with increasing

unlabeled data. We expect this to be true for test set performance as well, but do not

observe this consistently possibly since we use a fixed set of parameters that become

suboptimal as unlabeled data is increased. The optimal choice of the regularization

parameters depends on the amount of labeled and unlabeled data, and should be

adjusted by the model selection protocol accordingly.

2.7.4 Results on Benchmark Collections

[30] provide a collection of datasets which have frequently been used for benchmark

75

studies in Semi-supervised learning. Here, comparisons are made based on results

reported in [30] and [59] with transductive graph methods (abbreviated Graph-

Trans) such as Graph Regularization [2] and Spectral Graph Transduction (SGT)

[59]; the implementation of Transductive SVMs [97] in [57] (TSVM) and in [30]

(∇TSVM)); and with other methods proposed in [30] : training an SVM on a graph-

distance derived kernel (Graph-density) and Low Density Separation ([30]).

Data Sets

Experiments were performed on five well-known datasets described in Table 2.5.

Table 2.5: Datasets used in the experiments : c is the number classes, d is the data
dimensionality, l is the number of labeled examples, n is the total number of examples
in the dataset from which labeled, unlabeled and test examples, when required, are
drawn.

Dataset SVM Laplacian SVM RLS Laplacian RLS
g50c 2 50 50 550

Coil20 20 1024 40 1440
Uspst 10 256 50 2007

mac-windows 2 7511 50 1946
Webkb (page) 2 3000 12 1051
Webkb (link) 2 1840 12 1051

Webkb (page+link) 2 4840 12 1051

g50c is an artificial dataset generated from two unit-covariance normal distribu-

tions with equal probabilities. The class means are adjusted so that the true bayes

error is 5%, and 550 examples are drawn. Coil20 and Uspst datasets pose multiclass

image classification problems. Coil20 consists of 32 × 32 gray scale images of 20 ob-

jects viewed from varying angles and Uspst is taken from the USPS (test) dataset for

handwritten digit recognition. The text data consists of binary classification prob-

lems: mac-win is taken from the 20-newsgroups dataset and the task is to categorize

76

newsgroup documents into two topics: mac or windows; and the WebKB dataset

which we used in the previous section. For each WebKB document, there are two

representations: the textual content of the webpage (which we will call page repre-

sentation) and the anchortext on links on other webpages pointing to the webpage

(link representation). Following [71], we generated bag-of-words feature vectors for

both representations as follows: Documents were tokenized using the Rainbow Text

toolkit [69]; HTML-tagged content was skipped and no stoplist or stemming was used;

numbers were included in the tokenization. For the page representation, 3000 fea-

tures were selected according to information gain. For the link representation, 1840

features were generated with no feature selection. The columns of the document-word

matrix were scaled based on inverse document frequency weights (IDF) for each word

and the resulting TFIDF feature vectors were length normalized. We also considered

a joint (page+link) representation by concatenating the features.

In the discussion ahead, by a training set we will mean the union of the labeled

set and the unlabeled set of examples available to transductive and semi-supervised

learners. Test sets comprise of examples never seen before.

Transductive Setting

In the transductive setting, the training set comprises of n examples, l of which are

labeled (n, l are specified in Table 2.5). In Table 2.6 and Table 2.7, we lay out a

performance comparison of several algorithms in predicting the labels of the n − l

unlabeled examples. The experimental protocol is based on [59] for the WebKB

dataset and [30] for other datasets.

Protocol: For datasets other than WebKB, performance is evaluated by error rates

averaged over 10 random choices of the labeled set. Each random set samples each

77

Table 2.6: Transductive Setting: Error Rates on unlabeled examples. Results on
which Laplacian SVMs (LapSVM) and Laplacian RLS (LapRLS) outperform all other
methods are shown in bold. Results for Graph-Trans, TSVM,∇TSVM,Graph-density,
and LDS are taken from [30]

Dataset → g50c Coil20 Uspst mac-win
Algorithm ↓

SVM (n) 4.0 (2.9) 0.0 (0.0) 2.8 (0.8) 2.4 (1.3)
RLS (n) 4.0 (2.7) 0.0 (0.0) 2.5 (1.3) 2.8 (1.7)

SVM (l) 9.7 (1.7) 24.6 (1.7) 23.6 (3.3) 18.9 (5.7)
RLS (l) 8.5 (1.5) 26.0 (1.5) 23.6 (3.5) 18.8 (5.7)

Graph-Trans 17.3 6.2 21.3 11.7
TSVM 6.9 26.3 26.5 7.4

Graph-density 8.3 6.4 16.9 10.5
∇TSVM 5.8 17.6 17.6 5.7

LDS 5.6 4.9 15.8 5.1

LapSVM 5.4 (0.6) 4.0 (2.3) 12.7 (2.3) 10.4 (1.1)
LapRLS 5.2 (0.7) 4.3 (1.3) 12.7 (2.4) 10.0 (1.3)

class at least once (twice for coil20). Results for Graph-Reg, TSVM,∇TSVM,Graph-

density, and LDS are taken from [30] where models were selected by optimizing

error rates on the unlabeled set giving these methods an unfair advantage. For, LDS,

a cross-validation protocol was used in [30]. For LapRLS, LapSVM we preferred

to fix γA = 10−6, γI = 0.01 to reduce the complexity of model selection. Gaus-

sian base kernels and euclidean nearest neighbor graphs with gaussian weights were

used. The three parameters : number of nearest neighbors (nn), the degree (p) of

the graph Laplacian, and the width (σ) of the Gaussian are chosen based on 5-fold

cross-validation performance in a small grid of parameter values. Together, these

parameters specify the deformed kernel that incorporates the unlabeled data.

For WebKB (Table 2.7), we evaluated performance by precision-recall breakeven

points. Linear Kernels and cosine nearest neighbor graphs with gaussian weights were

used. In this case, we fixed nn = 200 (as in [59]), p = 5 (unoptimized), and σ as the

78

Table 2.7: Transductive Setting: 100-PRBEP for WebKb on unlabeled examples.
Results on which Laplacian SVMs (LapSVM) and Laplacian RLS (LapRLS) outper-
form all other methods are shown in bold. LapSVMjoint, LapRLSjoint use the sum
of graph laplacians in each WebKB representation.

Dataset → WebKB WebKB WebKB
Algorithm ↓ (link) (page) (page+link)

SVM (n) 5.1 (2.8) 5.3 (4.0) 0.7 (1.4)
RLS (n) 5.6 (2.8) 6.4 (3.8) 2.2 (3.0)

SVM (l) 28.1 (16.1) 24.3 (15.0) 18.2 (15.5)
RLS (l) 30.3 (16.5) 30.2 (15.3) 23.9 (16.1)

Graph-Trans 22.0 10.7 6.6
TSVM 14.5 8.6 7.8

LapSVM 17.2 (9.0) 10.9 (1.2) 6.4 (0.9)
LapRLS 19.2 (10.0) 11.2 (1.1) 7.5 (1.4)

LapSVMjoint 5.7 (1.5) 6.6 (1.3) 5.1 (0.9)
LapRLSjoint 6.7 (6.2) 8.9 (3.9) 5.9 (2.9)

mean edge length in the graph. Since the labeled set is very small for this dataset, we

performed model selection (including γA, γI for LapSVM, LapRLS) for all algorithms

by optimizing performance on the unlabeled set.

Discussion: Using the proposed data-dependent semi-supervised kernel (2.22),

Laplacian SVM and RLS return the best performance in four of the five datasets. In

g50c, performance is close to the bayes optimal. We obtain significant performance

gains on Coil20 and Uspst where there are strong indications of a manifold structure.

On WebKB, the methods outperform other methods in the page+link representation.

We also tried the following novel possibility: the point cloud norm was constructed

from the mean graph Laplacian over the three representations and used for deforming

RKHS in each representation. With this multi-view regularizer, the method signifi-

cantly outperforms all other methods for all representations.

Finally, note that one can recover the original base kernel by setting γI = 0.

79

With a good model selection, the proposed methods should never perform worse than

inductive methods.

Semi-supervised Setting

In the semi-supervised setting, the training set comprises of l+u examples (l labeled as

before and u unlabeled) and the test set comprises of n− l−u examples. Experiments

were performed to observe the performance of LapSVM and LapRLS on the test and

unlabeled sets to see how well these methods extend to novel out-of-sample examples.

Protocol: We performed a variation of 4-fold cross-validation. The data was di-

vided into four equal chunks: three chunks were combined to form the training set

and the remaining formed the test set. Each chunk therefore appeared in the train-

ing data thrice and as a test set once. Tables 2.8 and 2.9 report mean performance

of LapSVM and LapRLS in predicting the labels of each chunk as a subset of the

unlabeled set and as a test set. γA, γI are optimized for best mean performance; and

the other parameters are set as before. For WebKB, is is natural for the four chunks

to correspond to the four universities: training on three universities and testing on

the fourth. The detailed performance for each university is reported in Table 2.8 for

LapSVM (performance is similar for LapRLS).

Discussion: For g50c, mac-win, and WebKB the performance on unlabeled and

test subsets is almost indistinguishable. The out-of-sample extension is high qual-

ity also for Uspst. For Coil20, we observe an over-deformation phenomenon : the

in-sample performance is significantly better than out-of-sample performance. A

smoother base kernel and appropriate degree of deformation can remove this dif-

ference for coil20.

80

Table 2.8: Semi-supervised Setting: (WebKB) 100-PRBEP on unlabeled and test
examples

View → link page page+link
University ↓ unlab unlab unlab

test test test

Cornell 26.1 14.4 8.0
27.3 14.3 8.0

Texas 18.8 19.0 4.7
17.3 17.8 5.1

Washington 12.8 8.7 4.8
13.8 8.4 4.5

Wisconsin 18.6 14.5 7.1
19.3 15.7 7.0

Parameters of Deformation

The parameters γA, γI specify a trade-off between ambient regularization and defor-

mation. In Fig 2.9 we show the performance difference over test sets and unlabeled

subsets as a function on the γA, γI plane. Also shown is the location of the optimal

γA, γI . For a wide range of parameter settings, the performance difference is less

than 1% for g50c and mac-win, and less than 2% for coil20 and uspst. In uspst and

coil20 we see an expected behaviour : When γI is much larger than γA, the point

cloud norm dominates the regularization and the in-sample performance is found to

be much better than the out-of-sample performance. When γA is increased, the dif-

ference decreases. In general, the optimal performance strikes a good balance between

the ambient norm and the degree of deformation.

2.8 Unsupervised and Fully Supervised Cases

While the previous discussion concentrated on the semi-supervised case, our frame-

work covers both unsupervised and fully supervised cases as well.

81

Table 2.9: Semi-supervised Setting: Error rates on unlabeled and test examples.

Dataset → g50c Coil20 Uspst mac-win
Algorithm ↓ unlab unlab unlab unlab

test test test test

SVM 9.7 21.7 21.6 20.9
9.7 22.6 22.1 20.9

RLS 9.1 21.8 22.5 20.9
9.6 22.6 23.0 20.4

LapSVM 4.9 8.7 14.9 9.9
5.0 14.6 17.7 9.7

LapRLS 4.9 9.40 14.3 9.4
4.9 12.9 17.0 9.3

2.8.1 Unsupervised Learning: Clustering and Data Representation

In the unsupervised case one is given a collection of unlabeled data points x1, . . . ,xu.

Our basic algorithmic framework embodied in the optimization problem in Eqn. 2.3

has three terms: (i) fit to labeled data, (ii) extrinsic regularization and (iii) intrin-

sic regularization. Since no labeled data is available, the first term does not arise

anymore. Therefore we are left with the following optimization problem:

min
f∈HK

γA‖f‖2
K + γI‖f‖2

I (2.25)

Of course, only the ratio γ = γA
γI

matters. As before ‖f‖2
I can be approximated using

the unlabeled data. Choosing ‖f‖2
I =

∫

M 〈∇Mf,∇Mf〉 and approximating it by the

empirical Laplacian, we are left with the following optimization problem:

f∗ = argmin
P

i f(xi)=0;
P

i f(xi)
2=1

f∈HK

γ‖f‖2
K +

∑

i∼j

(f(xi) − f(xj))
2 (2.26)

82

Figure 2.9: Difference in Error Rates (in percentage on the vertical colorbar) over
test sets and unlabeled subsets in the γI − γA plane. The optimal mean performance
is obtained at the point marked by a black star.

1e−6 1e−4 0.01 1
0

1e−6

1e−4

0.01

1

γ
A

γ I

g50c

0.2

0.4

0.6

0.8

1e−6 1e−4 0.01 1
0

1e−6

1e−4

0.01

1

γ
A

γ I

coil20

5

10

15

20

1e−6 1e−4 0.01 1
0

1e−6

1e−4

0.01

1

γ
A

γ I

uspst

2

4

6

8

10

1e−6 1e−4 0.01 1
0

1e−6

1e−4

0.01

1

γ
A

γ I

mac−win

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Note that to avoid degenerate solutions we need to impose some additional conditions

(cf. [8]). It turns out that a version of Representer theorem still holds showing that

the solution to Eqn. 2.26 admits a representation of the form

f∗ =
u∑

i=1

αiK(xi, ·)

83

By substituting back in Eqn. 2.26, we come up with the following optimization prob-

lem:

α = argmin
1T Kα=0

αT K2α=1

γ‖f‖2
K +

∑

i∼j

(f(xi) − f(xj))
2 (2.27)

where 1 is the vector of all ones and α = (α1, . . . , αu) and K is the corresponding

Gram matrix.

Letting P be the projection onto the subspace of Ru orthogonal toK1, one obtains

the solution for the constrained quadratic problem, which is given by the generalized

eigenvalue problem

P (γK + KLK)Pv = λPK2Pv (2.28)

The final solution is given by α = Pv, where v is the eigenvector corresponding to

the smallest eigenvalue.

Figure 2.10: Two Moons Dataset: Regularized Clustering

−1 0 1 2

−1

0

1

2

 γ
A
 = 1e−06 γ

I
 = 1

−1 0 1 2

−1

0

1

2

 γ
A
 = 0.0001 γ

I
 = 1

−1 0 1 2

−1

0

1

2

 γ
A
 = 0.1 γ

I
 = 1

Remark 1: The framework for clustering sketched above provides a regularized ver-

sion of spectral clustering, where γ controls the smoothness of the resulting function

in the ambient space. We also obtain a natural out-of-sample extension for clustering

points not in the original data set. Figures 2.10, 2.11 show results of this method on

two two-dimensional clustering problems. Unlike recent work [9, 21] on out-of-sample

84

Figure 2.11: Two Spirals Dataset: Regularized Clustering

−1 0 1

−1

−0.5

0

0.5

1

1.5

 γ
A
 = 1e−06 γ

I
 = 1

−1 0 1

−1

−0.5

0

0.5

1

1.5

 γ
A
 = 0.001 γ

I
 = 1

−1 0 1

−1

−0.5

0

0.5

1

1.5

 γ
A
 = 0.1 γ

I
 = 1

extensions, our method is based on a Representer theorem for RKHS.

Remark 2: By taking multiple eigenvectors of the system in Eqn. 2.28 we obtain a

natural regularized out-of-sample extension of Laplacian Eigenmaps. This leads to

new method for dimensionality reduction and data representation. Further study of

this approach is a direction of future research. We note that a similar algorithm has

been independently proposed in [99] in the context of supervised graph inference. A

relevant discussion is also presented in [53] on the interpretation of several geometric

dimensionality reduction techniques as kernel methods.

2.8.2 Fully Supervised Learning

The fully supervised case represents the other end of the spectrum of learning. Since

standard supervised algorithms (SVM and RLS) are special cases of manifold regu-

larization, our framework is also able to deal with a labeled dataset containing no

unlabeled examples. Additionally, manifold regularization can augment supervised

learning with intrinsic regularization, possibly in a class-dependent manner, which

85

suggests the following algorithm :

f∗ = argmin
f∈HK

1

l

l∑

i=1

V (xi, yi, f) + γA‖f‖2
K +

γ+
I

(u+ l)2
fT
+L+f+ +

γ−I
(u+ l)2

fT
−L−f− (2.29)

Here we introduce two intrinsic regularization parameters γ+
I , γ−I and regularize

separately for the two classes : f+, f− are the vectors of evaluations of the function f ,

and L+, L− are the graph Laplacians, on positive and negative examples respectively.

The solution to the above problem for RLS and SVM can be obtained by replacing

γIL by the block-diagonal matrix






γ+
I L+ 0

0 γ−I L−




 in the manifold regularization

formulas given in Section 4.

2.9 Extensions of Manifold Regularization

By setting M = γI
γA
Lp, the modified kernel Eqn. 2.22 allows us to re-interpret mani-

fold regularization within the standard framework of kernel methods. γA and γI are

regularization parameters whose ratio controls the extent of the deformation. In par-

ticular, Laplacian SVM (LapSVM) and Laplacian RLS (LapRLS) become standard

RLS and SVM using these kernels. Additionally, based on different choices of M , our

approach provides a general algorithmic framework for incorporating useful domain

structures (e.g invariances) in kernel methods. By utilizing Eqn. 2.22, manifold regu-

larization may be implemented with kernel methods for a variety of semi-supervised

regression (e.g., Support Vector Regression), one-class SVM, and Bayesian inference

(Gaussian Processes, see [83]) tasks among other possible extensions.

CHAPTER 3

LOW-DENSITY CLASSIFICATION: NON-CONVEX

METHODS

An intuitive approach to utilizing unlabeled data in kernel-based classification algo-

rithms is to simply treat the unknown labels as additional optimization variables. For

margin-based loss functions, one can view this approach as attempting to learn low-

density separators. However, this is a hard optimization problem to solve in typical

semi-supervised settings where unlabeled data is abundant. To examine the full po-

tential of this class of methods modulo local minima problems, we apply branch and

bound techniques for obtaining exact, globally optimal solutions. Empirical evidence

suggests that the globally optimal solution can return excellent generalization perfor-

mance in situations where other implementations fail completely due to suboptimal

local minima. We present a novel deterministic annealing framework to alleviate lo-

cal minima, where an easier optimization problem is parametrically deformed to the

original hard problem and minimizers are smoothly tracked. This technique involves a

sequence of convex optimization problems that are exactly and efficiently solved. We

present empirical results on several synthetic and real world datasets that demonstrate

the effectiveness of our approach.

3.1 The Semi-supervised SVM Formulation

A major line of research on extending SVMs to handle partially labeled datasets is

based on the following idea: solve the standard SVM problem while treating the

unknown labels as additional optimization variables. By maximizing the margin in

the presence of unlabeled data, one learns a decision boundary that traverses through

86

87

low data-density regions while respecting labels in the input space. In other words,

this approach implements the cluster assumption for semi-supervised learning – that

points in a data cluster have similar labels. This idea was first introduced in [96]

under the name Transductive SVM, but since it learns an inductive rule defined over

the entire input space, we refer to this approach as Semi-supervised SVM (S3VM).

We return to the problem of binary classification. The training set consists of

l labeled examples {(xi, yi)}l
i=1, yi = ±1, and u unlabeled examples {xi}n

i=l+1,

with n = l + u. In an extended reglarization framework, the following minimization

problem is solved in S3VMs over both the RKHS f ∈ HK and the label vector

yu := [yl+1 . . . yn]⊤,

min
f∈HK , yu

I(f,yu) =
γ

2
‖f‖2

K +
1

2

l∑

i=1

V (yi, oi) +
γ′

2

n∑

i=l+1

V (yi, oi) (3.1)

where oi = f(xi) and V is a loss function. For SVMs, V is commonly taken to be

the Hinge loss or the squared Hinge loss.

The first two terms in the objective function I in (3.1) constitute a standard

regularization functional. The third term incorporates unlabeled data. The loss over

unlabeled examples is weighted by an additional hyperparameter, γ′, which reflects

confidence in the cluster assumption. In general, γ and γ′ need to be set at different

values for optimal generalization performance.

The minimization problem (3.1) is solved under the following class balancing con-

straint,

1

u

n∑

i=l+1

max(yi, 0) = r or equivalently
1

u

n∑

i=l+1

yi = 2r − 1. (3.2)

This constraint helps in avoiding unbalanced solutions by enforcing that a certain

88

user-specified fraction, r, of the unlabeled data should be assigned to the positive

class. It was introduced with the first S3VM implementation [57]. Since the true

class ratio is unknown for the unlabeled data, r is estimated from the class ratio on

the labeled set, or from prior knowledge about the classification problem.

There are two broad strategies for minimizing I:

1. Combinatorial Optimization: For a given fixed yu, the optimization over f

is a standard minimization of a regularization objective, i.e., usual SVM training

if the Hinge loss is being used1. Let us define,

J (yu) = min
f,b

I(f,yu) (3.3)

The goal now is to minimize J over a set of binary variables. This combinatorial

view of the optimization problem is adopted in [57, 13, 105, 84, 10, 27].

2. Continuous Optimization:

We define the effective loss function V ′ over an unlabeled example x as V ′(f(x)) =

min [V (f(x)), V (−f(x))] corresponding to making an optimal choice for the un-

known label of x. Thus, one can formulate an equivalent continuous optimiza-

tion problem over HK alone, with V and V ′ as the loss functions over labeled

and unlabeled examples respectively. The continuous objective function is,

J (f) =
γ

2
‖f‖2

K +
1

2

l∑

i=1

V (yi, f(xi)) +
γ′

2

n∑

i=l+1

V ′(f(xi)) (3.4)

Figure 3.1 shows the shape of V ′ for common choices of V . Since small outputs

are penalized, decision boundaries that pass through a low-density region in the

1. The SVM training is slightly modified to take into account γ′ weighted examples

89

input space are preferred. Thus, this may be seen as a general approach for

semi-supervised learning based on the cluster assumption: the assumption that

the true decision boundary does not cut data clusters.

Figure 3.1: Effective Loss function V ′

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
(a) Hinge Loss

f(x)

lo
ss

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
(b) Quadratic Hinge Loss

f(x)

lo
ss

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
(c) Squared Loss

f(x)

lo
ss

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8
(d) Logistic Loss

f(x)

lo
ss

The combinatorial nature of this problem due to discrete label variables, or equiv-

alently, the non-convexity of the effective loss function V ′ make Eqn. 3.1 a difficult

problem. Currently available approaches [96, 10] for global optimization of Eqn 3.1

for S3VMs are unrealistically slow for typical semi-supervised problems where unla-

beled data is plentiful. On the other hand, many recent techniques [57, 30, 36, 50]

are susceptible to local minima on difficult real world classification problems.

90

The main contributions of this chapter are summarized as follows:

1. We analyze the nature of the difficulty of solving S3VMs motivated by the

following questions: How well do current S3VM implementations approximate

the exact, globally optimal solution of the non-convex problem associated with

S3VMs ? Can one expect significant improvements in generalization perfor-

mance by better approaching the global solution ? We believe that these

questions are of fundamental importance for S3VM research and are largely

unresolved. This is partly due to the lack of simple implementations that prac-

titioners can use to benchmark new algorithms against the global solution, even

on small-sized problems.

We outline a class of Branch and Bound algorithms that are guaranteed to

provide the globally optimal solution for S3VMs. Branch and bound techniques

have previously been noted in the context of S3VM in [104], but no details

were presented there. We implement and evaluate a branch and bound strategy

that can serve as an upper baseline for S3VM algorithms. This strategy is not

practical for typical semi-supervised settings where large amounts of unlabeled

data is available. But we believe it opens up new avenues of research that can

potentially lead to more efficient variants.

Empirical results on some semi-supervised tasks presented in section 3.2.3 show

that the exact solution found by branch and bound has excellent generalization

performance, while other S3VM implementations perform poorly. These results

also show that S3VM can compete and even outperform graph-based techniques

(e.g., [110, 86]) on problems where the latter class of methods have typically

excelled.

2. We present a deterministic annealing framework for global optimization of ob-

91

jective functions of the form in Eqn 3.1 that scales to larger datasets while

providing some resistance to suboptimal local minima. Our approach generates

a sequence of optimization problems approaching the given problem with grad-

ually increasing complexity. These objective functions are locally minimized;

the solution for one problem is seeded to the next as the initial guess. This

strategy falls in a class of homotopy optimization methods, e.g., see [72, 45],

and can be also interpreted in terms of maximum entropy principles and de-

terministic variants of stochastic search techniques [75, 55]. A related class of

techniques is the Graduated Non-Convexity method of [16]. Some recent work

on semi-supervised learning with similar motivation appears in [24].

3. We derive and evaluate an alternating convex optimization procedure within this

framework. This method can utilize off-the-shelf optimization techniques for

regularization algorithms. For example, it yields a large scale semi-supervised

L2-SVM for sparse, linear settings [85] when implemented in conjunction with

specialized primal methods [62] (see Chapter 6).

4. We present an experimental study demonstrating the importance of the idea

of annealing on semi-supervised tasks. On some difficult classification prob-

lems, our methods show significant improvements over competing algorithms.

Whereas recent efforts for solving Eqn. 3.1 have largely focussed on margin loss

functions, our experimental study shows that the classical squared loss can also

be very effective for semi-supervised learning within this framework.

This chapter is arranged as follows: In section 3.2 we outline our Branch and

Bound approach benchmarking it in sub-section 3.2.3. In section 3.4.1 we outline

homotopy methods and deterministic annealing (DA) for global optimization. DA

92

is presented in section 3.5 and its empirical performance is described in Section 3.6.

Section 3.7 concludes this chapter.

3.2 Globally Optimal Branch & Bound Solution

3.2.1 Branch and bound basics

Suppose we want to minimize a function f over a space X , where X is discrete. A

branch and bound algorithm has two main ingredients:

Branching : the region X is recursively split into smaller subregions. This yields a

tree structure where each node corresponds to a subregion.

Bounding : consider two (disjoint) subregions (i.e. nodes) A and B ⊂ X . Suppose

that an upper bound (say a) on the best value of f over A is known and a lower

bound (say b) on the best value of f over B is known and that a < b. Then, we

know there is an element in the subset A that is better than all elements of B.

So, when searching for the global minimizer we can safely discard the elements

of B from the search: the subtree corresponding to B is pruned.

3.2.2 Branch and bound for S3VM

Recall the combinatorial formulation of S3VMs in Eqn 3.3. Branch-and-Bound ef-

fectively performs an exhaustive search over yu, pruning large parts of the solution

space based on the following simple observation: Suppose that a lower bound on

minyu∈A J (yu), for some subset A of candidate solutions, is greater than J (ỹu) for

some ỹu, then A can be safely discarded from exhaustive search. The algorithm orga-

nizes subsets of solutions into a binary tree (Figure 3.22) where nodes are associated

2. Figure generated by Olivier Chapelle.

93

with a fixed partial labeling of the unlabeled data set and the two children correspond

to the labeling of some new unlabeled point. Thus, the root corresponds to the initial

set of labeled examples and the leaves correspond to a complete labeling of the data.

Any node is then associated with the subset of candidate solutions that appear at the

leaves of the subtree rooted at that node (all possible ways of completing the labeling,

given the partial labeling at that node). This subset can potentially be pruned from

the search by the Branch-and-Bound procedure if a lower bound over corresponding

objective values turns out to be worse than an available solution.

The effectiveness of pruning depends on the following design issues: (1) the lower

bound at a node and (2) the sequence of unlabeled examples to branch on. For the

lower bound, we use the objective value of a standard SVM trained on the associated

(extended) labeled set3. As one goes down the tree, this objective value increases as

additional loss terms are added, and eventually equals J at the leaves. Note that

once a node violates the balance constraint, it can be immediately pruned by resetting

its lower bound to ∞. We use a labeling-confidence criterion to choose an unlabeled

example and a label on which to branch. The tree is explored on the fly by depth-

first search. This confidence-based tree exploration is also intuitively linked to Label

Propagation methods [110] for graph-transduction. On many small datasets datasets,

the branch and bound procedure is able to return the globally optimal solution in

reasonable amount of time.

We point the reader to [27] for pseudocode of our algorithm and more details.

3. Note that in this SVM training, the loss terms associated with (originally) labeled and (cur-
rently labeled) unlabeled examples are weighted 1 and γ′ respectively.

94

objective function

Initial labeled set

y =0

y =15

Increasing

Do not explore

Best solution so far

3

y =07 7y =05

3 y =1

y =1

Objective function on
currently labeled points

12.7

15.6

17.8

14.3

23.3

Figure 3.2: Branch-and-Bound Tree

3.2.3 Generalization Performance at Global vs Local Minima

We consider here two datasets where other S3VM implementations are unable to

achieve satisfying test error rates. This naturally raises the following questions: Is

this weak performance due to the unsuitability of the S3VM objective function for

these problems or do these methods get stuck at highly sub-optimal local minima ?

Two moons

The “two moons” dataset is now a standard benchmark for semi-supervised learning

algorithms. Most graph-based methods easily solve this problem as was demonstrated

in the previous chapter, but so far, all S3VM algorithms find it difficult to construct

the right boundary (an exception is a deterministic annealing approach[84] using an

95

L1 loss that we describe later in this chapter). We drew 100 random realizations of

this dataset, fixed the bandwidth of an RBF kernel to σ = 0.5 and set γ = 0.1, γ′ = 1.

We compared ∇S3VM[30], cS3VM[24], CCCP [36], SVMlight [57] and DA [84].

For the first 3 methods, there is no direct way to enforce the constraint (3.2). However,

these methods have a constraint that the mean output on the unlabeled point should

be equal to some constant. This constant is normally fixed to the mean of the labels,

but for the sake of consistency we did a dichotomy search on this constant in order

to have (3.2) satisfied.

Results are presented in Table 3.1. Note that the test errors for other S3VM

implementations are likely to be improved by hyperparameter tuning, but they will

still stay very high. For comparison, we have also included the results of a state-of-

the-art graph based method, LapSVM [86] whose hyperparameters were optimized

for the test error and the threshold adjusted to satisfy the constraint (3.2).

Table 3.1: Results on the two moons dataset (averaged over 100 random realizations)

Test error (%) Objective function

∇S3VM 59.3 13.64

cS3VM 45.7 13.25
CCCP 64 39.55

SVMlight 66.2 20.94
DA 34.1 46.85
Branch-Bound 0 7.81
LapSVM 3.7 N/A

Three Cars

Extensive benchmark results reported in [26, benchmark chapter] show that on prob-

lems where classes are expected to reside on low-dimensional non-linear manifolds,

96

e.g., handwritten digits, graph-based algorithms significantly outperform S3VM im-

plementations.

We consider here such a dataset by selecting three confusible classes from the

COIL20 dataset [30] (see figure 3.3). There are 72 images of cars per class, corre-

sponding to rotations of 5 degrees (and thus yielding a one dimensional manifold).

We randomly selected 2 images per class to be in the labeled set and the rest being

unlabeled. Results are reported in table 3.2. The hyperparameters were chosen to be

σ = 3000 and γ = 0.01, γ′ = 1.

Figure 3.3: The Three Cars dataset, subsampled to 32×32

Table 3.2: Results on the Three Cars dataset (averaged over 10 random realizations)

Test error (%) Objective function

∇S3VM 60.6 267.4

cS3VM 60.6 235
CCCP 47.5 588.3

SVMlight 55.3 341.6
DA 48.2 611
Branch-Bound 0 110.7
LapSVM 7.5 N/A

From Tables 3.1 and 3.2, it appears clearly that (1) the S3VM objective function

leads to excellent test errors; (2) other S3VM implementations fail completely in

finding a good minimum of the objective function and (3) the global S3VM solution

can actually outperform graph-based alternatives even if other S3VM implementations

are not found to be competitive.

97

3.3 Extensions of Branch and Bound Algorithm

This basic implementation can perhaps be made more efficient by choosing better

bounding and branching schemes. Also, by fixing the upper bound as the currently

best objective value, we restricted our implementation to follow depth-first search.

It is conceivable that breadth-first search is equally or more effective in conjunction

with alternative upper bounding schemes. Pruning can be done more aggressively

to speed-up termination at the expense of obtaining a solution that is suboptimal

within some tolerance (i.e prune B if a < b− ǫ). Finally, we note that a large family

of well-tested branch and bound procedures from zero-one quadratic programming

literature can be immediately applied to the S3VM problem for the special case of

squared loss. An interesting open question is whether one can provide a guarantee

for polynomial time convergence under some assumptions on the data and the kernel.

Concerning the running time of our current implementation, we have observed

that it is most efficient whenever the global minimum is significantly smaller than

most local minima: in that case, the tree can be pruned efficiently. This happens

when the clusters are well separated and γ, γ′, σ are in an appropriate range.

3.4 A Deterministic Annealing Formulation

The Branch and Bound implementation does not scale to large datasets, but should

instead be considered as a proof of concept: the S3VM objective function is very

well suited for semi-supervised learning and more effort is justified on trying to ef-

ficiently find good local minima. With this motivation, in this section we develop a

deterministic framework for solving S3VMs.

98

3.4.1 Homotopy Methods

The intuition for the deterministic annealing framework for global optimization is

simply stated in the following. Consider an unconstrained optimization problem: find

u⋆ = argminu∈Rn C(u) where the objective function C(u) may have many possible

local minima. Instead of directly dealing with such a problem, we first construct a

related “easier” objective function c(u). The minimizers of this function are either

known, or easy to compute, for example due to convexity. We then gradually deform

the easy problem to the original problem by specifying a smooth map, i.e a homotopy

J (u, T) parameterized by a real-valued variable T , so that J (u, t1) = c(u) and

J (u, t2) = C(u). Typically, one chooses a convex homotopy such as J (u, T) =

(1 − T) C(u) + T c(u) where 0 ≤ T ≤ 1, or a global homotopy such as J (u, T) =

C(u)+Tc(u) where T ∈ [0,∞). In practice, T may be varied over an interval starting

from t1 and ending at t2, in fixed additive steps or by a fixed multiplicative factor.

We track local minimizers along the deformation path, at each point starting from

the previously computed solution.

Clearly, whether or not this method succeeds in finding a global minimum of C(u)

depends strongly on the choice of the map J (u, T) and the manner in which T is

varied. For general choices for these, one cannot guarantee a global minimum since

there need not be a path in the variable T connecting the sequence of local minimizers

to the global minimum, and even if there is one, there is no apriori guarantee that the

minimum reached at T = t2 is globally optimal. Moreover, in general, the optimal

deformation protocol need not be monotonically increasing or decreasing in T . Inspite

of these limitations, in typical applications, it is often more natural to construct

c(u) than to find good starting points. A good choice of the homotopy function and

deformation protocol and can drastically reduce local minima problems in the starting

99

and middle stages of the optimization process allowing the focus to be on the globally

relevant features of the original objective function.

3.4.2 Deterministic Annealing

Deterministic annealing may be viewed as a homotopy method for dealing with com-

binatorial optimization problems. This approach involves two steps. In the first step,

discrete variables are treated as random variables over which a space of probability

distributions is defined. In the second step, the original problem is replaced by a con-

tinuous optimization problem of finding a distribution in this space that minimizes

the expected value of the objective function. The latter optimization is performed

by a homotopy method using negative of the entropy of a distribution as the “easy”,

convex function. Specifically, one solves:

p⋆ = argmin
p∈P

EpC(u) − TS(p) (3.5)

where u ∈ {0, 1}n are the discrete variables for the objective function C(u), P is a

family of probability distributions over u, Ep denotes expectation with respect to a

distribution p and S(p) denotes the entropy of p. Note that if T = 0 and P contains

all possible point-mass distributions on {0, 1}n, then the global minimizer p⋆ puts all

its mass on the global minimizer of C(u). Factorial distributions where the associated

random variables are taken to be independent are one such class of distributions.

With such a choice for P , the first step of “relaxation” to continuous variables does

not lose any optimality. The task of finding a minimizer close to the global minimizer

in P is then left to the homotopy method in the second step.

The choice of entropy in the homotopy is well-motivated in various other ways. If

T is non-zero and P is unrestricted, the minimizer in Eqn. 3.7 is given by the Gibbs

100

distribution p⋆gibbs(u) =
exp (−C(u)/T)

∑

{0,1}n exp (−C(u)/T)
. As T 7→ 0, the Gibbs distribution be-

gins to concentrate its mass on the global minimizer of C(u). Therefore, a stochastic

optimization strategy, simulated annealing [64], samples candidate solutions from a

Markov process whose stationary distribution is the Gibbs distribution, while grad-

ually lowering T . In deterministic annealing, one attempts to find a distribution in

P that is closest to the Gibbs distribution in the sense of KL-divergence, resulting

in an optimization problem that is equivalent to Eqn. 3.7 [14]. Finally, one can also

interpret this approach in terms of maximum entropy inference [75].

3.5 Deterministic Annealing for S3VMs

We now apply deterministic annealing for solving Eqn. 3.1 which involves a mix

of discrete and continuous variables. The discussion above motivates a continuous

objective function,

JT (f,p) = EpI(f,yu) − TS(p) (3.6)

defined by taking the expectation of I(f,yu) (Eqn. 3.1) with respect to a distribution

p on yu and including entropy of p as a homotopy term. Thus, we have:

JT (f,p) =
λ

2
‖f‖2

K +
1

l

l∑

i=1

V (yif(xi))

+
λ′

u

u∑

j=1

[

pjV
(

f(x′
j)
)

+ (1 − pj)V
(

−f(x′
j)
)]

+
T

u

u∑

j=1

[
pj log pj + (1 − pj) log (1 − pj)

]
(3.7)

where p = (p1 . . . pu) and pi may be interpreted as the probability that y′i = 1.

This objective function for a fixed T is minimized under the following class bal-

101

ancing constraint, in place of the balance constraint in Eqn. 3.2:

1

u

u∑

j=1

pj = r (3.8)

As in the usual formulations, r is treated as a user-provided parameter. It may also

be estimated from the labeled examples.

The solution to the optimization problem above

(f⋆
T ,p

⋆
T) = argmin

f∈HK ,p∈[0,1]u
JT (f,p)

is tracked as the parameter T is lowered to 0. The final solution is given as f⋆ =

limT→0 f
⋆
T . In practice, we monitor the value of the objective function in the opti-

mization path and return the solution corresponding to the minimum value achieved.

3.5.1 Optimization

For any fixed value of T , the problem in Eqns. 3.7, 3.8 is optimized by alternating the

minimization over f ∈ HK and p ∈ [0, 1]u respectively. Fixing p, the minimization

over f can be done by standard techniques for solving weighted regularization prob-

lems. Fixing f , the minimization over p can also be done easily as described below.

While the original problem is non-convex, keeping one block of variables fixed yields

a convex optimization problem over the other block of variables. Both these convex

problems can be solved exactly and efficiently. An additional advantage of such block

optimization is that it allows efficient algorithms for training kernel classifiers to be

used directly within the deterministic annealing procedure. We note that a similar al-

ternating optimization scheme was proposed in [50] in the context of semi-supervised

logistic regression. We now provide some details.

102

Optimizing f for fixed p

By the Representer theorem, the minimizer over f ∈ HK of the objective function in

Eqn. 3.7 for fixed p is given as:

f(x) =
l∑

i=1

αiK(x,xi) +
u∑

j=1

αl+jK(x,x′
j) (3.9)

The coefficients α = (α1 . . . αl+u) can be computed by solving a finite dimensional

optimization problem that arises by substituting this expression in Eqn. 3.7 where the

norm ‖f‖2
K = αTKα. The resulting objective function in α is denoted as JT (α,p).

Below we explicitly write down the solutions for two common choices of loss functions.

One can also solve for α using other optimization techniques and for other choices of

loss functions.

Regularized Least Squares (RLS)

For Regularized Least squares (RLS), V (t) = (1 − t)2/2. Setting ∇αJT (α,p) = 0

and solving for α we obtain:

α = (G+ λC)−1Y (3.10)

where Y = [y1 . . . yl, (2p1−1) . . . (2pu−1)]T , G is the gram matrix over the l+u points,

C is a diagonal matrix whose first l diagonal entries are l and remaining u diagonal

entries are u/λ′. In Eqn. 3.10, note that the matrix (G+ λC)−1 is independent of p

and therefore needs to be computed only once. Subsequent updates in the iteration

only involve matrix vector products. Thus, if the inverse (G+ λC)−1 can be formed,

the updates for α in the deterministic annealing iterations are very cheap.

SVM with Quadratic Hinge Loss

The quadratic hinge loss function is given by V (t) = max(0, 1 − t)2/2. We apply

103

the primal finite newton methods from [62, 23] to solve Eqn. 3.7 with this loss. A

sequence of candidate solutions {α(k)} is generated as follows. For any α(k) in the

sequence, denote the output, as given by Eqn. 3.9, on any example x as f (k)(x) and

define the following index sets: i0 = {i : yif
(k)(xi) < 1}, i1 = {j : f (k)(x′

j) ≤ −1},

i2 = {j : f (k)(x′
j) ≥ 1}, and i3 = {j : |f (k)(x′

j)| < 1}.

Consider the following objective function in the variable α:

J (k)(α) =
λ

2
αTKα +

1

l

∑

i0

Vs (yif(xi))

+
λ′

u




∑

i1

pjVs

(

f(x′
j)
)

+
∑

i2

(1 − pj)Vs

(

−f(x′
j)
)

+
∑

i3

pjVs

(

f(x′
j)
)

+ (1 − pj)Vs

(

−f(x′
j)
)





where Vs(t) = (1 − t)2/2. This objective function is a local quadratic approximation

of the objective function Eqn. 3.7 and simply involves squared loss terms. Denote

ᾱ = argminα J (k)(α). This can be computed by solving a linear system that arises

by setting ∇αJ (k)(α) = 0. Finally, obtain α(k+1) = α(k) + δ⋆(ᾱ − α(k)) where

the step length δ⋆ is obtained by performing an exact line search by solving the one-

dimensional problem δ⋆ = argminδ>0 JT (α + δ(
¯

α(k) − α(k)),p). This can be done

using efficient recursive updates as outlined in [62]. From the arguments in [62], it

can be shown that the sequence {αk} starting from any initial point converges in a

finite number of steps to the minimizer (in α) of JT (α,p) for a given fixed p. By

starting the optimization from the solution of the previous DA iteration (“seeding”),

the convergence can be very fast.

Large Scale Implementations

In the case of linear kernels, instead of using Eqn. 3.9 we can directly write f(x) =

104

wTx where updates for the weight vector w are obtained by the finite Newton proce-

dure outlined above. For large scale problems such as text classification where (l+u)

as well as the dimension of x are possibly large and the data matrix consisting of

the xi has only a small fraction of nonzero elements, effective conjugate gradient

schemes can be used to implement the updates for w. The result is an impressively

fast algorithm for such problems. See Chapter 6 for full details.

Optimizing p for fixed f

For the latter problem of optimizing p for a fixed f , we construct the Lagrangian:

L = JT (f,p) − ν(1
u

∑u
j=1 pj − r). Solving ∂L/∂pj = 0, we get:

pj =
1

1 + e
gj−ν

T

(3.11)

where gj = λ′[V (f(x′
j)) − V (−f(x′

j))]. Substituting this expression in the bal-

ance constraint in Eqn. 3.8, we get a one-dimensional non-linear equation in ν:

1
u

∑u
j=1

1

1+e
gi−ν

T

= r. The root is computed exactly by using a hybrid combination

of Newton-Raphson iterations and the bisection method together with a carefully set

initial value.

For a fixed T , the alternate minimization of f ∈ HK and p proceeds until some

stopping criterion is satisfied. A natural criterion is the KL-divergence between values

of p in consecutive iterations. The parameter T is decreased in an outer loop until the

total entropy falls below a threshold. Table 3.3 outlines the steps for the algorithm

with default parameters. In the rest of this paper, we will abbreviate our method as

DA (loss) where loss is l1 for hinge loss, l2 for quadratic hinge loss and sqr for squared

loss.

105

Table 3.3: Semi-supervised Learning with Deterministic Annealing.

Inputs: {xi, yi}l
i=1, {x′

j}u
j=1, λ, λ

′, r
Initialize: Set p = (r, . . . , r) ∈ Ru q = p

Set T = 10 R = 1.5 ǫ = 10−6

loop1 while S(p) > ǫ (S denotes entropy)

loop2 while KL(p,q) > ǫ
(KL denotes KL-divergence)

Update α by solving Eqn. 3.7
for fixed p

Set q = p
Set p according to Eqn. 3.11

end loop1
T = T/R

end loop2

Return f(x) =
∑l

i=1 αiK(x,xi) +
∑u

j=1 αl+jK(x,x′
j)

3.5.2 Annealing Behaviour of Loss functions

We can develop a good intuition for the working of our method by ignoring the

balancing constraint in Eqn. 3.8 and putting together the loss terms in Eqn. 3.7 for

a single unlabeled example x′
j :

ΦT (f(x′
j), pj) = pjV (f(x′

j)) + (1 − pj)V (−f(x′
j))

+T [pj log pj + (1 − pj) log(1 − pj)]

Keeping f fixed, the optimal value of pj , say p⋆j , is given by Eqn. 3.11 (with ν = 0).

The effective loss function then becomes V ′
T (f(x′

j)) = ΦT (f(x′
j), p

⋆
j).

In Figure 3.4, we plot V ′
T as a function of f(x′

j) for different settings of T . The

sub-plots show the behavior of V ′
T for common choices of V .

As T is decreased from high to low values, we see interestingly different behavior

for different loss functions with respect to their shape in the “inner” interval [−1, 1]

106

Figure 3.4: Annealing behavior of loss functions parameterized by T .

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−2

−1.5

−1

−0.5

0

0.5

1
(a) Hinge Loss

f(x)

lo
ss

Decreasing T

−3 −2 −1 0 1 2 3
−2

−1.5

−1

−0.5

0

0.5

1
(b) Quadratic Hinge Loss

f(x)

lo
ss

−3 −2 −1 0 1 2 3
−2

−1

0

1

2

3

4
(c) Squared Loss

f(x)

lo
ss

−3 −2 −1 0 1 2 3
−2.5

−2

−1.5

−1

−0.5

0

0.5

1
(d) Logistic Loss

f(x)

lo
ss

(within the margin) and “outer” interval (outside the margin).

We see that at high values of T , the hinge loss has a sharp upward slope in the

outer interval and is almost constant in the inner interval. The other loss functions

are unimodal with a minimum at the decision boundary. As T is decreased, the

effective loss V ′
T gradually deforms into the effective loss V ′ in the original objective

function in Eqns. 3.1,3.4 (also see Figure 3.1).

The Transductive SVM implementations of [57, 30] also solve a sequence of opti-

mization problems with gradually increasing values of λ′. We refer to these implemen-

tations as JTSVM and ∇TSVM respectively. The respective effective loss functions

are shown in Figure 3.5. We see that in all stages of the optimization, unlabeled ex-

107

amples in the outer interval do not influence the decision boundary. Other approaches

for Transductive SVM, e.g., [50, 36] do not discuss such an annealing component.

Figure 3.5: Loss functions for JTSVM and ∇TSVM parameterized by λ′.

−3 −2 −1 0 1 2 3
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
(a) JTSVM

f(x)

lo
ss

Increasing λ’

−3 −2 −1 0 1 2 3
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(b) ∇ TSVM

f(x)
lo

ss

To examine the effectiveness of different annealing strategies and loss functions,

we performed experiments on two toy datasets, 2moons and 2circles, with highly

non-linear cluster structures. These datasets are shown in Figure 3.6 (a particular

labeling is shown). For 10 random choices of 2 labeled examples, we recorded the

number of times JTSVM, ∇TSVM and DA produced a decision boundary perfectly

classifying the unlabeled data. For JTSVM and DA we report results for Hinge loss

(l1) and quadratic hinge loss (l2).

The experiment was conducted with RBF kernels. In Table 3.4, we report the

best performance for each method over a grid of parameters. We see that DA out-

performs ∇TSVM which performs better than JTSVM. In our experiments, DA with

Hinge loss succeeded in every trial for both 2circles and 2moons. On the other

hand JTSVM failed everytime on 2moons and succeeded once on 2circles.

108

Figure 3.6:

2moons 2circles

Table 3.4: Number of successes out of 10 trials.
Dataset → 2moons 2circles
Algorithm ↓
JTSVM (l2) 0 1
JTSVM (l1) 0 1
∇TSVM 3 2
DA (l2) 6 3
DA (l1) 10 10

3.6 Empirical Results

We present an experimental study on a collection of 5 datasets listed in Table 3.5.

usps2 is a subset of the USPS dataset with images of digits 2 and 5. coil6 is a 6-class

dataset derived from a collection of images of objects viewed from different angles.

pc-mac is a subset of the 20-newsgroup text dataset posing the task of categorizing

newsgroup documents into two topics: mac or windows. Finally, eset2 is a subset of

the ISOLET dataset consisting of acoustic features of isolated spoken utterances of 9

confusible letters {B,C,D,E,G, P, T, V, Z}. We considered the binary classification

task of separating the first 4 letters from the rest.

109

Table 3.5: Datasets with d features, l labeled examples, u unlabeled examples, v
validation examples, t test examples.

Dataset d l u v t
usps2 241 93 1000 32 375
coil6 241 90 1008 30 372

pc-mac 7511 37 1410 13 486

eset2 617 33 1305 12 1350

Experimental Protocol

Datasets were split into subsets of labeled, unlabeled, validation and test exam-

ples. The sizes of these subsets are recorded in Table 3.5. Results presented in

Tables 3.6, 3.7 are averaged over 10 random splits. For each method compared, we

set λ′ = 1 and recorded results on each split over the parameter grid defined by

λ = 10−4, 10−3, 10−2, 10−1

and widths for RBF kernels in the range

σ = 1/8, 1/4, 1/2, 1, 2, 4, 8

These σ values are relative to a default value based on pairwise distances between

examples in the dataset.

To focus our study on quality of optimization and degree of sensitivity to lo-

cal minima, we chose to construct stratified splits so that each algorithm compared

was provided an accurate estimate of class ratios. Parameters were chosen with re-

spect to performance on the validation set for each split. Since model selection in

semi-supervised settings with very few labels can often be unreliable and is largely

considered to be an open issue, in Tables 3.6, 3.7 we also record the minimum of

the mean error rate achieved over the parameter grid. This experimental setup neu-

110

Table 3.6: Comparison between SVM, JTSVM,∇TSVM and DA (all with quadratic
hinge loss (l2)). For each method, the top row shows mean error rates with model
selection; the bottom row shows best mean error rates. u/t denotes error rates on
unlabeled and test sets. Also recorded in performance of DA with squared loss (sqr).

usps2 coil6 pc-mac eset2
u/t u/t u/t u/t

SVM 8.0/8.2 22.9/23.5 21.1/20.0 20.9/21.8
7.5/7.8 21.5/21.9 18.9/17.9 19.4/19.7

JTSVM 8.8/8.0 21.4/22.8 14.1/11.9 10.4/10.5
7.6/7.2 19.9/21.2 10.4/7.0 9.2/8.9

∇TSVM 7.5/7.7 25.0/24.9 7.6/6.9 12.2/12.7
6.9/7.1 21.4/21.6 5.4/4.5 8.7/9.1

DA 6.5/6.6 15.6/16.4 11.8/9.4 10.8/10.7
(l2) 6.4/6.3 13.6/15.0 5.3/4.8 8.1/8.5

DA 7.3/7.1 16.5/16.7 11.8/9.4 11.6/11.3
(sqr) 5.7/6.3 13.8/15.2 5.4/4.7 9.0/9.4

tralizes any undue advantage a method might receive due to different sensitivities to

parameters, class imbalance issues and shortcomings of the model selection protocol.

Comparing DA, JTSVM and ∇TSVM

Table 3.6 presents a comparison between DA, JTSVM and ∇TSVM. The baseline

results for SVM using only labeled examples are also provided. Being a gradient

descent technique, ∇TSVM requires loss functions to be differentiable; the imple-

mentation in [30] uses the l2 loss function over labeled examples and an exponential

loss function over unlabeled examples. The results in Table 3.6 for DA and JTSVM

were also obtained using the l2 loss. Thus, these methods attempt to minimize very

similar objective functions over the same range of parameters.

We see that DA is the best performing method on usps2vs5 and coil6. The per-

formance improvement with DA is particularly striking on the coil6 dataset where

the TSVM and ∇TSVM performance falls below the SVM baseline. Since this dataset

111

consists of images of 100 objects randomly grouped into 6 classes, each class is ex-

pected to be composed of several clusters. Gaps in the data space for points within

the same class probably result in many local minima. The same observations do not

hold to the same extent for the eset2 dataset where the two classes are composed of

acoustic sub-clusters. Here, all methods seem to perform similarly though DA returns

the best mean performance over the parameter grid. On the pc-mac text dataset,

DA and ∇TSVM out-perform JTSVM. The difference between DA and ∇TSVM is

found to be minor in terms of best performance achieved on this dataset. We also

observe that these methods also yield good out-of-sample extension on the test set.

Table 3.7: Importance of Annealing: DA versus fixed T (no annealing) optimization.
For each method, the top row shows mean error rates with model selection; the
bottom row shows best mean error rates. u/t denotes error rates on unlabeled and
test sets.

usps2 coil6 pc-mac eset2
u/t u/t u/t u/t

DA- 6.5/6.6 15.6/16.4 11.8/9.4 10.8/10.7
6.4/6.3 13.6/15.0 5.3/4.8 8.1/8.5

T=0.1 8.5/8.4 23.9/23.3 12.6/9.9 8.1/8.2
6.6/6.8 20.0/21.0 5.7/4.7 7.8/8.0

T=0.01 8.9/8.2 22.2/23.3 17.1/12.7 12.9/12.0
7.6/7.0 20.1/21.3 7.1/5.7 8.1/8.5

T=0.001 9.0/8.1 23.6/24.4 18.6/13.0 13.5/12.5
7.9/7.2 20.3/21.5 9.1/7.3 8.8/8.8

Importance of Annealing

In Table 3.7, we show the results obtained with DA for three fixed values of T with

no annealing. We see that in most cases, fixed T optimization performs worse than

optimization with annealing (gradually decreasing T from high to low values). On

coil, the performance drop is very significant implying that annealing may be critical

for hard problems. Cases where fixed T optimization out-performed optimization

112

with annealing are shown in bold. However, even in these cases, annealing actually

achieved a lower value of the objective function but this did not correspond to lower

error rates.

Performance with Squared Loss

In Table 3.6 we see that results obtained with the squared loss are also highly

competitive with other methods on real world semi-supervised tasks. This is not

surprising given the success of the regularized least squares algorithm for classification

problems.

3.7 Discussion

Our results establish DA as a highly competitive practical S3VM algorithm. We be-

lieve that as annealing proceeds and the objective function deforms, the interplay

between the geometric structure of the data and the inner and outer intervals of the

effective loss function is a key issue for global optimization in semi-supervised kernel

machines based on Eqn. 3.1. In the early stages of the optimization, an ideal effective

loss function should make the decision boundary sufficiently sensitive to unlabeled

examples that are “far-away” so that it begins to align with the global geometry of

data clusters. When only local adjustments need to be done, the remaining opti-

mization can succeed under weaker deformations. An interesting direction for future

work is the design of general homotopies using functions other than the entropy in

Eqn. 3.7. Another intriguing possibility is to combine DA with the semi-supervised

kernel of Eqn. 2.22 thus implementing manifold and cluster assumptions within the

same algorithm.

CHAPTER 4

CO-REGULARIZATION: A MULTI-VIEW APPROACH

The Co-Training algorithm uses unlabeled examples in multiple views to bootstrap clas-

sifiers in each view, typically in a greedy manner, and operating under assumptions of

view-independence and compatibility. In this chapter, we propose a Co-Regularization

framework where classifiers are learnt in each view through forms of multi-view regu-

larization. We propose algorithms within this framework that are based on optimizing

measures of agreement and smoothness over labeled and unlabeled examples. These

algorithms naturally extend standard regularization methods like Support Vector Ma-

chines (SVM) and Regularized Least squares (RLS) for multi-view semi-supervised

learning, and inherit their benefits and applicability to high-dimensional classification

problems. An empirical investigation is presented that confirms the promise of this

approach.

4.1 Introduction

A striking aspect of natural learning is the ability to integrate and process multi-modal

sensory information with very little supervisory feedback. The scarcity of labeled

examples, abundance of unlabeled data and presence of multiple representations are

aspects of several applications of machine learning as well. An example is hypertext

classification: Modern search engines can index more than a billion web-pages in

a single web-crawl, but only a few can be hand-labeled and assembled into web

directories. Each web-page has disparate descriptions: textual content, inbound and

outbound hyperlinks, site and directory names, etc. Although traditional machine

learning has focussed on two extremes of an information spectrum (supervised and

unsupervised learning), a number of recent efforts have considered the middle-ground

113

114

of semi-supervised learning, with or without a multi-view component [2, 7, 86, 57,

59, 18, 22, 30, 108].

The Co-Training framework proposed in [18] has been among the first efforts that

provided a widely successful algorithm with theoretical justifications. The framework

employs two assumptions that allow unlabeled examples in multiple-views to be uti-

lized effectively: (a) the assumption that the target functions in each view agree on

labels of most examples (compatibility assumption) and (b) the assumption that the

views are independent given the class label (independence assumption). The first

assumption allows the complexity of the learning problem to be reduced by the con-

straint of searching over compatible functions; and the second assumption allows high

performance to be achieved since it becomes unlikely for compatible classifiers trained

on independent views to agree on an incorrect label. The co-training idea has become

synonymous with a greedy agreement-maximization algorithm that is initialized by

supervised classifiers in each view and then iteratively re-trained on boosted labeled

sets, based on high-confidence predictions on the unlabeled examples. The original

implementation in [18] runs this algorithm on naive-bayes classifiers defined in each

view. For more on agreement maximization principles, see [39, 35, 106].

In this chapter, we present a Co-Regularization framework for multi-view semi-

supervised learning. Our approach is based on implementing forms of multi-view

regularization using unlabeled examples. We suggest a family of algorithms within

this framework: The Co-Regularized Least Squares (Co-RLS) algorithm performs a

joint regularization that attempts to minimize disagreement in a least squared sense;

the Co-Regularized Laplacian SVM and Least Squares (Co-LapSVM, Co-LapRLS) al-

gorithms utilize multi-view graph regularizers to enforce complementary and robust

notions of smoothness in each view. Manifold Regularization techniques [7, 81, 86]

presented in Chapter 2 are employed for Co-LapSVM and Co-LapRLS. Learning is

115

performed by effectively exploiting useful structures collectively revealed with multi-

ple representations.

We highlight features of the proposed algorithms:

1. These algorithms arise from natural extensions of the classical framework of

regularization in Reproducing Kernel Hilbert Spaces. The unlabeled data is in-

corporated via additional regularizers that are motivated from recognized prin-

ciples of semi-supervised learning.

2. The algorithms are non-greedy, involve convex cost functions and can be easily

implemented.

3. We derive data-dependent kernels that provide a multi-view RKHS where the

usual norm corresponds to consensus maximization.

4. The influence of unlabeled data and multiple views can be controlled explicitly.

In particular, single view semi-supervised learning and standard supervised al-

gorithms are special cases of this framework.

5. Experimental results demonstrate that the proposed methods out-perform stan-

dard co-training on synthetic and hypertext classification datasets.

We next setup the problem of semi-supervised learning in multiple views. In

subsequent sections, we discuss the Co-Regularization framework, derive underlying

data-dependent kernels, and evaluate the empirical performance of our approach.

4.2 Multi-View Learning

In the multi-view semi-supervised learning setting, we have labeled examples {(xi, yi)}l
i=1

and unlabeled examples {xi}l+u
l+1 where each example x = (x(1),x(2)) is seen in two

116

Figure 4.1: Bipartite Graph Representation of multi-view learning. The small black
circles are unlabeled examples.

(a)

view 1 view 2

(b)

view 1 view 2

views with x(1) ∈ X (1) and x(2) ∈ X (2). The setup and the algorithms we discuss can

also be generalized to more than two views. For the rest of this discussion, we consider

binary classification problems where yi ∈ {−1, 1}. The goal is to learn the function

pair f = (f (1), f (2)), where f (1) : X (1) 7→ ℜ and f (2) : X (2) 7→ ℜ are classifiers in

the two views. In this paper, we will focus on how the availability of unlabeled ex-

amples and multiple views may be profitably leveraged for learning high-performance

classifiers f (1), f (2) in each view.

How can unlabeled data and its multiple views help? In Figure 4.1(a), we re-

produce the bipartite graph representation of the co-training setting, to initiate a

discussion. The figure shows the two views of labeled and unlabeled examples, ar-

ranged as a bipartite graph. The left and right nodes in the graph are examples as

seen in view 1 and view 2 respectively, with edges connecting the two views of an

example. The unlabeled examples are shown as small black circles and the other

117

examples are labeled. The class of compatible pairs of functions identically label two

nodes in the same connected component of this graph. This may be interpreted as a

requirement of smoothness over the graph for the pair (f (1), f (2)). Thus, unlabeled

examples provide empirical estimates of regularizers or measures of smoothness to

enforce the right complexity for the pair (f (1), f (2)).

In many applications, it is unrealistic for two examples to share a view exactly.

A more realistic situation is depicted in Figure 4.1(b) where three types of edges

are shown: the (solid) edges connecting views of each example as in Figure 4.1(a);

the (dashed) edges connecting similar examples in each view; and the (dotted) edges

connecting examples in each view based on similarity in the other view. The similarity

structure in one view induces a complementary notion of similarity in the other views

with respect to which regularizers can be constructed using unlabeled data.

In the next section, we describe algorithms that arise from constructions of such

regularizers.

4.3 Co-Regularization

The classical regularization framework [74, 77, 97] for supervised learning solves the

following minimization problem :

f∗ = argmin
f∈HK

1

l

l∑

i=1

V (xi, yi, f) + γ‖f‖2
K (4.1)

where HK is an Reproducing Kernel Hilbert space (RKHS) of functions with kernel

function K; {(xi, yi)}l
i=1, is the labeled training set; and V is some loss function,

such as squared loss for Regularized Least Squares (RLS) or the hinge loss function

for Support Vector Machines (SVM). By the Representer theorem, the minimizer is

118

a linear combination of kernel functions centered on the data:

f(x) =
l∑

i=1

αiK(x, xi)

This real-valued function is thresholded and used for binary classification.

In the Co-regularization framework, we attempt to learn the pair f = (f (1), f (2))

in a cross-product of two RKHS defined over the two views, i.e., f (1) ∈ HK(1) and

f (2) ∈ HK(2) . The key issue is imposing an appropriate notion of complexity on this

pair so that a regularized solution effectively utilizes unlabeled data in the two views.

We now describe some ideas.

Co-Regularized Least Squares

A natural idea is to attempt to learn the pair f = (f (1), f (2)) so that each func-

tion correctly classifies the labeled examples, and the outputs of the pair agree over

unlabeled examples. This suggests the following objective function:

(f (1)∗, f (2)∗) = argmin
f (1)∈H

K(1)

f (2)∈H
K(2)

l∑

i=1

[

yi − f (1)(x
(1)
i)
]2

+

µ

l∑

i=1

[

yi − f (2)(x
(2)
i)
]2

+ γ1‖f (1)‖2
H

K(1)
+

γ2‖f (2)‖2
H

K(2)
+

γC

(l + u)

l+u∑

i=1

[

f (1)(x
(1)
i) − f (2)(x

(2)
i)
]2

Here, µ is a real-valued parameter to balance data fitting in the two views, γ1, γ2

are regularization parameters for the RKHS norms in the two views, and γC is the

coupling parameter that regularizes the pair towards compatibility using unlabeled

119

data. It is easy to see that a representer theorem holds that expresses the minimizing

pair
(

f (1)∗(x(1)), f (2)∗(x(2)
)

in the following form:





l+u∑

i=1

αiK
(1)(x(1), x

(1)
i) ,

l+u∑

i=1

βiK
(2)(x(2), x

(2)
i)





The (l+u) dimensional expansion coefficient vectors α, β may be computed by solving

the following coupled linear system:

[
1

l
JK1 + γ1I +

γC

l + u
K1

]

α− γC

l + u
K2β =

1

l
Y

[
µ

l
JK2 + γ2I +

γC

l + u
K2

]

β − γC

l + u
K1α =

µ

l
Y

where Y is a label vector given by Yi = yi for 1 ≤ i ≤ l and Yi = 0 for l+1 ≤ i ≤ l+u;

J is a diagonal matrix given by Jii = |Yi|, and K1, K2 are gram matrices of the kernel

functions K(1), K(2) over labeled and unlabeled examples.

When γC = 0, the system ignores unlabeled data and yields an uncoupled pair of

solutions corresponding to supervised RLS. We also note a relationship over coeffi-

cients corresponding to unlabeled examples: γ1αi = −γ2βi for l+ 1 ≤ i ≤ l+ u. The

algorithm appears to work well in practice when orthogonality to the constant func-

tion is enforced over the data to avoid all unlabeled examples from being identically

classified.

Working with the hinge loss, one can also extend SVMs in a similar manner.

Co-Laplacian RLS and Co-Laplacian SVM

The intuitions from the discussion concerning Figure 4.1(b) is to learn the pair

f = (f (1), f (2)) so that each function correctly classifies the labeled examples and

120

is smooth with respect to similarity structures in both views. These structures may

be encoded as graphs on which regularization operators may be defined and then

combined to form a multi-view regularizer. The function pair is indirectly coupled

through this regularizer.

We assume that for each view (indexed by s = 1, 2), we can construct a similarity

graph whose adjacency matrix is W (s), where W
(s)
ij measures similarity between x

(s)
i

and x
(s)
j . The Laplacian matrix of this graph is defined as L(s) = D(s) −W (s) where

D(s) is the diagonal degree matrixD
(s)
ii =

∑

j W
(s)
ij . The graph Laplacian is a positive

semi-definite operator on functions defined over vertices of the graph. It provides the

following smoothness functional on the graph:

gTL(s)g =
∑

ij

(gi − gj)
2W

(s)
ij

where g is a vector identifying a function on the graph whose value is gi on node i.

Other regularization operators can also be defined using the graph Laplacian [65, 89,

2].

One way to construct a multi-view regularizer is to simply take a convex com-

bination L = (1 − α)L(1) + αL(2) where α ≥ 0 is a non-negative parameter which

controls the influence of the two views. To learn the pair f = (f (1)∗, f (2)∗), we solve

the following optimization problems for s = 1, 2 using squared loss or hinge loss:

f (s)∗ = argmin
f (s)∈H

K(s)

1

l

l∑

i=1

V (x
(s)
i , yi, f

(s)) +

γ
(s)
A ‖f (s)‖2

K(s) + γ
(s)
I f (s)TLf (s)

where f (s) denotes the vector
(

f (s)(x
(s)
1), . . . , f (s)(x

(s)
l+u)

)T
; and the regularization

121

parameters γ
(s)
A , γ

(s)
I control the influence of unlabeled examples relative to the RKHS

norm.

The solutions to these optimization problems produce Laplacian SVM (for hinge

loss) or Laplacian RLS (for squared loss) classifiers trained with the multi-view graph

regularizer (see Chapter 2). The resulting algorithms are termed Co-Laplacian SVM

and Co-Laplacian RLS respectively.

The solutions are obtained by training a standard SVM or RLS using the following

modified kernel function given in Eqn. 2.22:

K̃(s)(x(s), z(s)) = K(s)(x(s), z(s)) −

kT
x(s)(I +MG(s))−1Mkz(s)

where G(s) is the gram matrix of the kernel function K(s); kx(s) denotes the vec-

tor
(

K(s)(x
(s)
1 , x(s)), . . . , K(s)(x

(s)
n , x(s))

)T
and M =

γ
(s)
I

γ
(s)
A

L. See Chapter 2 for a

derivation.

When α = 0 for view 1 or α = 1 for view 2, the multi-view aspect is ignored and

the pair consists of Laplacian SVM or Laplacian RLS in each view. When γI = 0, the

unlabeled data is ignored and the pair consists of standard SVM or RLS classifiers.

The idea of combining graph regularizers and its connection to co-training has been

briefly discussed in [59] in the context of applying spectral graph transduction (SGT)

in multi-view settings. However, unlike co-training, SGT does not produce classifiers

defined everywhere in X(1), X(2) so that predictions cannot be made on novel test

points. By optimizing in reproducing kernel Hilbert spaces defined everywhere, Co-

Laplacian SVM and RLS can also extend beyond the unlabeled examples.

122

4.4 Kernels for Co-Regularization

Let {xi = (x1
i , x

2
i)}n

i=1 with x ∈ X = X 1 ×X 2 be examples appearing in two “view”

spaces. Let K1 : X 1 × X 1 7→ R and K2 : X 2 × X 2 7→ R be reproducing kernels

of spaces H1 : X 1 7→ R and H2 : X 2 7→ R whose norms we will denote as ‖ · ‖H1

and ‖ · ‖H2 . We will consider the extension of these function spaces to X (overloaded

with the same notation) so that Hi : X 7→ R defined by Ki(x,z) = Ki(xi, zi) and

f i(x) = f i(xi) ∈ Hi where the superscript i will always run over 1, 2 and the two

overloaded notations might be used interchangeably.

Let us construct the space

H = H1 ⊕H2 = {f |f(x) = f1(x) + f2(x), f1 ∈ H1, f2 ∈ H2}

and impose on it a data-dependent co-regularization norm:

‖f‖2
H = min

f=f1+f2

f1∈H1,f2∈H2

(

‖f1‖2
H1 + ν‖f2‖2

H2 + µ

n∑

i=1

[

f1(x) − f2(x)
]2
)

(4.2)

where µ, ν are real-valued constants.

Proposition: The Reproducing Kernel K for H is given by:

K(x,z) =

[

K1(x,z) +
1

ν
K2(x,z)

]

−

µ

(

k1
x − 1

ν
k2

x

)T [

I + µ

(

G1 +
1

ν
G2
)]−1(

k1
z − 1

ν
k2

z

)

(4.3)

where for i = 1, 2, ki
x =

[
Ki(x,x1) . . . K

i(x,xn)
]

and Gi is the associated gram

matrix of Ki over the data.

Proof: (Generalizing Theorem 5 in [12]) Let F = H1 ⊗ H2 = {(f1, f2) : f1 ∈

123

H1, f2 ∈ H2} with an inner product defined on it as follows:

〈(f1, f2), (g1, g2)〉F = 〈f1, g1〉H1 + ν〈f2, g2〉H2 + µ(∆[f1, f2])T (∆[g1, g2]) (4.4)

where ∆[f1, f2] =
[(
f1(x1) − f2(x1)

)
. . .
(
f1(xn) − f2(xn)

)]T
.

Define the map,

u : F 7→ H u(f1, f2) = f1 + f2

Let N = u−1({0}). The map u is linear and onto. Its kernel N is a subspace of

F . Let ((fn,−fn)) be a sequence of elements of N converging to (f1, f2). Then (fn)

converges to f1 in H1 and (−fn) converges to f2 in H2. Thus, f1 = −f2 and N is a

closed subspace of F .

Let N⊥ be the orthogonal complement of N in F and let v be the restriction of

u to N⊥. The map v is one-to-one and hence one can define an inner product on H

by setting,

〈f, g〉H = 〈v−1(f), v−1(g)〉F (4.5)

With this inner product H is a Hilbert space of functions. We will show that K

is the Reproducing Kernel of H.

Kz = K(z, ·) ∈ H since

Kz = h1 + h2

124

where

h1 = K1
z − µ

∑

i

βziK
1
xi

∈ H1 (4.6)

h2 =
1

ν
K2

z +
µ

ν

∑

i

βziK
2
xi

∈ H2 (4.7)

where βz =

[

I + µ

(

G1 +
1

ν
G2
)]−1(

k1
z − 1

ν
k2

z

)

(4.8)

It remains to check the reproducing property of K.

Let f ∈ H, (f ′, f ′′) = v−1(f) and (K′
z,K′′

z) = v−1(Kz). So we have the following

(the second by above),

Kz = K′
z + K′′

z (4.9)

Kz = h1 + h2 (4.10)

Subtracting the two equations, this implies that,

(

K′
z − h1

)

+
(

K′′
z − h2

)

= 0 (4.11)

In other words,
(

K′
z − h1,K′′

z − h2
)

∈ N

. Since (f ′, f ′′) ∈ N⊥, their inner product in F is 0,

〈(f ′, f ′′),
(

K′
z − h1,K′′

z − h2
)

〉F = 0 (4.12)

125

To check the Reproducing property, observe that

〈f,Kz〉H = 〈v−1(f), v−1(Kz)〉F

= 〈(f ′, f ′′), (K′
z,K′′

(z))〉F

= 〈(f ′, f ′′), (h1, h2)〉F

= 〈f ′, h1〉H1 + ν〈f ′′, h2〉H2 + µ(∆[f ′, f ′′])T (∆[h1, h2])

=

(

f ′(z) − µ
∑

i

βzif
′(xi)

)

+ ν

(

1

ν
f ′′(z) +

µ

ν

∑

i

βzif
′′(xi)

)

+

µ
∑

i

(
f ′(xi) − f ′′(xi)

) (

h1(xi) − h2(xi)
)

= f ′(z) + f ′′(z)

= f(z) (4.13)

where the second last step follows because,

h1(xi) − h2(xi) = βzi

Let (f1, f2) ∈ F , f = f1 + f2, (g1, g2) = (f1, f2)− v′(f). By the definition of the

norm in F ,

‖(f1, f2)‖2
F = ‖f1‖2

H1 + ν‖f2‖2
H2 + µ

∑

i

[

f1(xi) − f2(xi)
]2

But (g1, g2) ∈ N and v−1(f) ∈ N⊥. So,

‖(f1, f2)‖2
F = ‖v−1(f)‖2

F + ‖(g1, g2)‖2
F = ‖v−1(f)‖2

F + ‖g1‖2
H1 +

ν‖g2‖2
H2 + µ

∑

i

[

g1(xi) − g2(xi)
]2

(4.14)

126

So for the decomposition f = f1 + f2, we always have,

‖f‖2
H = ‖v−1(f)‖2

F ≤ ‖f1‖2
H1 + ν‖f2‖2

H2 + µ
∑

i

[

f1(xi) − f2(xi)
]2

(4.15)

where the equality holds if and only if (f1, f2) = v−1(f). �

4.5 Experiments

Two-Moons-Two-Lines Toy Example

Figure 4.2 and Figure 4.3 demonstrate Co-Regularization ideas on a toy dataset in

which objects in two classes appear as two moons in one view and two oriented lines

in another. Class conditional view independence is enforced by randomly associating

points on one moon with points on one line. One example is labeled from each class

and shown as the large colored diamond and circle; the other examples are unlabeled.

We chose a Gaussian kernel for the two moons view and a linear kernel for the two

lines view.

In the top panel of Figure 4.2, we see that a supervised Regularized least squares

classifier is unable to produce reasonable classifiers with only 2 labeled examples.

In the middle panel, we add two more labeled examples based on the most confident

predictions (which are actually incorrect) of the supervised classifiers on the unlabeled

data. The middle panel shows the classifiers obtained after 1 iteration of standard

co-training with the boosted set of 4 labeled examples. Since greedy co-training does

not revise conjectured labels, subsequent training fails to yield good classifiers in

either view. By contrast, Co-Regularized Least squares classifiers, shown in panel 3,

effectively use the unlabeled data in two views.

127

Figure 4.2: Two-Moons-Two-Lines : RLS, Co-trained RLS and Co-RLS

View 1: Supervised RLS View 2: Supervised RLS

View 1: Cotrained RLS (1 step) View 2: Cotrained RLS (1 step)

View 1: Co−RLS (Alignment) View 2: Co−RLS (Alignment)

In the top panel of Figure 4.3, we show single-view semi-supervised learning with

Laplacian SVMs in the two views. We then add noise to the two-moons view so that

the two clusters are merged. This is shown in the bottom left panel. In this case, the

unlabeled data fails to provide any structure for Laplacian SVM to exploit. However,

when the joint graph laplacian is used, the rich structure in the two-lines view can be

used to recover good decision boundaries in the two moons view. The bottom right

panel shows the boundaries constructed by Co-Laplacian SVM.

128

Figure 4.3: Two-Moons-Two-Lines : Laplacian SVM and Co-Laplacian SVM

View 1: LapSVM View 2: LapSVM

Noisy View 1: LapSVM
(Error rate : 144/200)

View 1: Co−Regularized LapSVM (joint graph)
(Error rate : 18/200)

Hypertext Categorization

We considered the WebKB hypertext categorization task studied in [18, 59, 70].

There are 1051 web documents belonging to two classes: course or non-course from

four universities. Only 12 examples are labeled. The two views are the textual content

of a webpage (which we will call page representation) and the anchortext on links on

other webpages pointing to the webpage (link representation).

The data was preprocessed into 3000 features for the page-view and 1840 features

for the link view using the Rainbow software [69]. We used linear kernels for both

views. We also considered a page+link representation with concatenated features.

129

Table 4.1: Mean precision-recall breakeven points over unlabeled documents for a
hypertext classification task.

View → link page page+
Classifier ↓ link

RLS (full) 94.4 94.0 97.8
SVM (full) 93.7 93.5 99.0

RLS (12) 72.0 71.6 78.3
SVM (12) 74.4 77.8 84.4

SGT 78.0 89.3 93.4
TSVM 85.5 91.4 92.2
LapRLS 80.8 89.0 93.1
LapSVM 81.9 89.5 93.6

Co-trained RLS 74.8 80.2 -
Co-RLS 80.8 90.1 -

Co-LapRLS1 93.1 90.8 90.4
Co-LapRLS2 94.4 92.0 93.6

Co-trained SVM 88.3 88.7 -
Co-LapSVM1 93.2 93.2 90.8
Co-LapSVM2 94.3 93.3 94.2

The performance of several methods as measured by mean precision-recall breakeven

point (PRBEP) is tabulated in Table 4.1. These methods are (a) RLS, SVM on fully

labeled data sets and with 12 randomly chosen labeled examples; (b) single-view semi-

supervised methods: SGT [59], TSVMs [57], Laplacian SVM, Laplacian RLS [7, 86];

(c) multi-view semi-supervised methods: Co-RLS, Co-trained RLS, Co-trained SVM,

Co-LapRLS and Co-LapSVM. In Table 4.1, Co-LapRLS1, Co-LapSVM1 use α = 0.5

to combine graph Laplacians in page and link views; and Co-LapRLS2, Co-LapSVM2

use the mean graph Laplacian over page, link and page+link views, to bias classi-

fiers in each view. The performance of supervised classifiers with full labels (RLS

(full) and SVM (full)) is the mean PRBEP for 10-fold cross-validation. For all other

methods, we average over random choices of 12 labeled examples (making sure that

130

each class is sampled at least once) and measure the mean PRBEP evaluated over

the remaining 1039 examples. We avoided the model selection issue due to the small

size of the labeled set and chose best parameters over a small range of values.

The results in table 4.1 suggest that Co-LapSVM and Co-LapRLS are able to

effectively use unlabeled examples in the two views. The link and page classifiers using

12 labeled examples, 1039 unlabeled examples and multi-view regularizers match the

performance of supervised classifiers with access to all the labels. We also see that

Co-RLS outperforms Co-trained RLS. In Table 4.2, we report the performance of Co-

Laplacian SVM (using the mean graph Laplacian over the page, link and page+link

views) in classifying unlabeled and test web-documents of four universities. The high

correlation between performance on unlabeled and unseen test examples suggests that

the method provides good extension outside the training set.

Table 4.2: Mean precision-recall breakeven points over test documents and over un-
labeled documents (test , unlabeled)

University → page+link page link
View ↓
Cornell 91.6 , 90.9 88.9 , 88.8 88.2 , 88.7
Texas 94.8 , 95.5 91.6 , 92.4 90.9 , 93.5

Washington 94.7 , 94.9 94.0 , 93.9 93.7 , 92.4
Wisconsin 92.0 , 91.4 87.6 , 86.6 86.1 , 84.5

4.6 Conclusion

We have proposed extensions of regularization algorithms in a setting where unla-

beled examples are easily available in multiple views. The algorithms provide natural

extensions for SVM and RLS in such settings. We plan to further investigate the

properties of these algorithms and benchmark them on real world tasks.

CHAPTER 5

SPARSE NON-LINEAR MANIFOLD REGULARIZATION

Two of the most challenging themes in high-dimensional data analysis [66] are: (a)

Learning with few basis functions (sparse learning), and (b) Learning with few labeled

but many unlabeled examples (semi-supervised learning). It is natural to attempt to

extend sparse methods to utilize unlabeled data with the goal of handling large-scale

applications where labeling is expensive. Greedy matching pursuit and l1 methods can

be immediately combined with Manifold Regularization for sparse, semi-supervised

learning. However, through a series of empirical observations, we find that intrinsic

graph regularization on restricted function spaces may not be sufficiently effective

for semi-supervised learning. We propose modifications for overcoming this problem,

leading to significant performance improvements over the basic techniques.

In a typical semi-supervised classification setting, we are given a few labeled ex-

amples together with a large collection of unlabeled data from which to estimate

an unknown decision surface. Fortunately, on many natural problems, unlabeled

examples carry information about the classification boundary that semi-supervised

learning algorithms can attempt to exploit with the aim of improving generalization

performance. Not only are there labeling constraints in many applications, but also

computational or interpretability requirements which make it particularly desirable

to learn functions that are compact, in some sense. The twin goal of sparse, semi-

supervised learning is to utilize large amounts of unlabeled data, and to do so in a

highly compressible manner.

The Manifold Regularization framework for semi-supervised learning (see Chap-

ter 2) is motivated by the assumption that even if data points appear in a high-

dimensional ambient space, they truly reside on an underlying low-dimensional man-

131

132

ifold on which the decision function changes smoothly. Given l labeled examples

{xi, yi}l
i=1 and u unlabeled examples {xj}n=l+u

j=l+1 , the following extended regulariza-

tion problem is solved,

argmin
f∈Hk

R(f) =
γA

2
‖f‖2

k +
γI

2
f⊤Mf +

l∑

i=1

V (yi, f(xi)) (5.1)

Here, Hk is an RKHS corresponding to a kernel function k defined over the ambient

space, and V is a loss function over labeled examples. The RKHS norm ‖f‖k pro-

vides a data-independent measure of smoothness. Together with the loss terms, this

norm constitutes a standard objective function for supervised learning where γA is

the ambient regularization parameter. The additional regularization term, γI
2 f⊤Mf ,

measures smoothness with respect to the intrinsic data geometry which is estimated

using unlabeled examples. Here, f⊤ = [f(x1) . . . f(xn)], γI is the intrinsic reg-

ularization parameter and M is a graph regularization matrix which is typically

derived from the Laplacian of a data-similarity graph over both labeled and unla-

beled examples. Solving (1) over ambiently-defined functions resolves the problem of

out-of-sample prediction on new test points that arises in graph transduction where

γI
2 f⊤Mf +

∑l
i=1 V (yi, fi) is minimized over f ∈ Rn (all functions defined only over

the finite collection of labeled and unlabeled examples). Another key feature of Man-

ifold regularization is that depending on the degree to which the manifold assumption

is satisfied, γA and γI may be traded off to smoothly span solutions from supervised

learning (ignore unlabeled data) to graph transduction (trust intrinsic regularizer

fully) with out-of-sample extension.

The solution to the minimization problem above, by the Representer theorem, is

of the form, f(x) =
∑n

i=1 βiK(x,xi), and therefore only the finite set of βi remain

to be estimated. However, in typical semi-supervised situations where n is large, it

133

becomes expensive to evaluate f . In this chapter, we consider the problem of find-

ing sparse solutions for Manifold Regularization. We begin in Section 5.1 by briefly

outlining techniques based on Kernel Matching pursuit [100] and l1 regularization

methods (Lasso and LARS [46, 93]). In Section 5.2, we present comprehensive em-

pirical evidence that minimizing (5.1) over restricted function spaces defined by a

sparse set of basis functions does not lead to satisfactory performance. In section 5.3

we suggest modifications that lead to significant improvements over basic techniques.

Section 5.4 concludes this chapter. A recent but different approach for sparsified

manifold regularization is presented in [95].

5.1 Sparse Manifold Regularization

We restrict our attention to squared loss, V (y, f(x)) = 1
2(y−f(x))2, since the details

are particularly simple in this case. The problem (5.1) then becomes the objective

function of the Laplacian Regularized Least Squares (laprls) algorithm. Our ob-

servations and methods also hold for Laplacian SVMs which typically perform very

similar to laprls (see analysis of benchmarks in [26]).

5.1.1 Greedy Kernel Matching Pursuit

Given that Eqn. 5.1 is a quadratic minimization problem for the squared loss, the

kernel matching pursuit ideas of [100] can be easily extended to Eqn. 5.1 to get sparse

solutions. Instead of minimizing Eqn. 5.1 over the RKHS HK , we can restrict the

solution to a linear subspace corresponding to a set of d points (it is usual to select

these points as a subset of the training points). Define HJ = {∑d
j=1 βjk(xj , .) : j ∈

134

J} and minimize R over HJ , which can be rewritten as

argmin
βJ

RJ (βJ) =
γA

2
βT
J KJJβJ +

γI

2
βT
J KJNMKNJβJ +

1

2
‖Y −KLJβJ‖2 (5.2)

Here, Y is the label vector, N denotes indices of labeled and unlabeled examples,

L denotes the indices of labeled examples, and the notation KJL refers to the gram

matrix between points in J and L. The basis set J is incrementally built by a

greedy approach. There are two approaches for selecting the new basis function

to insert. The pre-backfitting approach computes (β⋆
J , β

⋆
j) = argmin(βJ ,βj)

RJ∪{j}

and gives the score RJ∪{j}(β⋆
J ; β⋆

j) to a candidate basis function indexed by j; the

candidate with the minimum score is picked. This method is expensive because

of the need to do a full update for each candidate. The post-backfitting method

computes β⋆
j = argminβj

RJ∪{j}(βJ , βj) and sets the score to RJ∪{j}(βJ ; β⋆
j) keeping

βJ fixed at its previous value, i.e., at the minimizer of RJ ; this method is cheap and

effective and so we employ it in our implementation. By maintaining the Cholesky

decomposition of the Hessian of RJ and updating it as new basis functions are added,

solutions can be efficiently computed. For the sake of efficiency, the candidate basis

index j is restricted to a set of κ indices, say κ = 50. Since M is typically the

Laplacian (or a power series in it) of a highly sparse graph, matrix vector products

with M can be done in O(n) time. Because of this, the O(nd2) complexity of kernel

matching pursuit for selecting d basis functions in the supervised case can be retained

also for sparse manifold regularization, even though its quadratic objective function

is more complex.

135

5.1.2 l1 Regularization

Another effective way of obtaining sparse solutions is via l1 regularization (the Lasso

model [93]) by considering the minimization of

R(β) + γS‖β‖1 (5.3)

where β is the coefficient vector corresponding to all basis functions, R(β) is the

corresponding objective function Eqn. 5.1, and γS is the l1 regularization parameter.

For a given γS , we have βj 6= 0 for a subset J of indices. Optimality for (5.3) implies

gj + γS sign(βj) = 0 ∀j ∈ J, |gj | < γS ∀j 6∈ J (5.4)

where g is the gradient of R(β).

As γS is decreased from a large value towards zero, β moves from 0 to the solution

of (5.1). As shown in [73] the solution path with respect to γS is piecewise linear.

From (5.4) it is clear that the break points correspond to γS values where either |gj |

becomes equal to γS for some j 6∈ J or βj changes sign for a j ∈ J . Because of

occurrences of the second type the size of J can decrease at some break points, but

overall, the size of J increases as γS is decreased towards zero. Roughly speaking

the method has a complexity of O(n2d) for choosing d basis functions. The LARS

procedure [46] is obtained by following the same sequence of steps, but omitting

deletions of indices from J . Often LARS produces a solution path quite close to the

Lasso path.

136

5.2 An Empirical Study

We took 6 datasets (see Table 5.1) frequently used in semi-supervised learning litera-

ture and split them into training (labeled and unlabeled) and validation subsets in the

ratio 3 : 1. We randomly labeled 5% of the training data (except for 2moons where

we took one positive and one negative example). All results below are averaged over

10 random choices of labels. Unless specified otherwise, we tune hyper-parameters

with respect to the validation set1 and look at error rates in predicting labels of unla-

beled examples; our observations also hold for out-of-sample prediction. 2moons and

g50c are artificial datasets [30]. Examples in g50c are generated from two stan-

dard normal multi-variate Gaussians, the labels correspond to the Gaussians, and

the means are located in 50-dimensional space such that the Bayes error is 5%.

coil20bin is a binary version of the coil20 dataset [30], which contains images

of 20 objects taken at various poses. We took the first 10 objects as positive class and

remaining as negative class. usps25 is taken from the benchmark study in [26] where

the task is to separate images of digits 2 and 5 from the remaining digits in the USPS

test set. coil20bin and usps25 are thus expected to have multiple sub-clusters with

highly non-linear structures in both classes, which makes it challenging to learn with

few basis functions as well as few labels. mnist3vs8 is a subset of the MNIST dataset

where we did PCA denoising as a preprocessing step; the task here is to distinguish

between digits 3 and 8. Finally, pcmac is a text dataset that has also previously

been used for semi-supervised experiments in [30].

Remark: We use laprls to denote the full solution of (5.1); splaprls to denote

the sparse solution (5.2) where the basis J is specified by context; greedy, lasso,

1. We took a sizeable validation set to avoid the model selection issue which is not the main topic
of this paper.

137

Table 5.1: Datasets with dim features; l labeled, u unlabeled, and v validation exam-
ples. In experiments below, we focus on basis sets of size dmax.

Dataset dim l n = l + u v dmax Domain
2moons 2 2 450 150 15 synthetic
g50c 50 21 412 138 42 synthetic

coil20bin 1024 54 1080 360 108 image
usps25 241 57 1125 375 113 image

mnist3vs8 100 75 1500 500 150 image
pcmac 7511 73 1459 487 146 text

lars, random denote the sparse Laplacian RLS where the basis set is obtained

by kernel matching pursuit (using post-backfitting which is cheaper), Lasso, Lars or

random selection respectively. rls(l) denotes the RLS solution with only l labels

ignoring unlabeled data, rls(n, d) denotes the RLS solution in the fully supervised

situation where all n examples are labeled, but d basis functions are used (the basis set

is chosen by standard kernel matching pursuit), rls(n) denotes the fully supervised

case with all the basis functions.

5.2.1 Behaviour of Sparse Greedy Method

We begin by observing the behaviour of greedy. First, we optimized laprls over

a grid of graph hyper-parameters (number of nearest neighbors, degree of the Lapla-

cian), the width σ of the Gaussian Kernel K(x,z) = exp−‖x−z‖2

2σ2 , and the reg-

ularization parameters γA, γI . Then, keeping these hyperparameters fixed, we ran

greedy with dmax = n, noting the error rate as basis functions are added one by

one, and greedy gradually approaches the full laprls solution. In Figure 5.1, four

learning curves are shown for each dataset: (i) A horizontal “baseline” which corre-

sponds to rls(l) with optimized hyperparameters. For semi-supervised learning to

be useful, this baseline has to be outperformed. (ii) greedy, which uses u = n − l

unlabeled examples together with l labeled examples, (iii) random where the ba-

138

sis functions are inserted randomly (without replacement), and (iv) rls(n, d) whose

performance may be viewed as a lower-bound on the error rates one can achieve with

semi-supervised learning. Since the training set is fully labeled, we plot validation

performance in this case. The best we can hope is that semi-supervised learning

curves would approach this performance even with few basis functions.

The following observations can be made: (1) Typically, greedy performs better

than random. (2) On most datasets, however, the error rates of greedy decrease

slowly, beating the rls(l) baseline only after a fairly large number of basis have been

added. (3) We focus on a particular point on the x-axis of these learning curves where

the compression is 10%, i.e., dmax = 0.1n. These dmax values are also tabulated

in Table 5.1 and marked by the vertical line in Figure 5.1. The parameters were

held fixed (at values that optimize laprls) so that the limiting behaviour could be

studied. However, when dmax = 0.1n, the capacity of the hypothesis space is highly

restricted and these hyper-parameters become suboptimal: e.g., on usps25 , a very

narrow kernel width optimizes the full solution but is not suitable when dmax = 0.1n.

In Table 5.2, we report the greedy performance with re-tuned hyperparameters.

Typically, in the sparse setting a relatively wider kernel width is prefered. Note that

while there are significant improvements with a better choice of hyper-parameters

(compare fixed and tuned columns of Table 5.2), on many datasets greedy still

does not significantly outperform the rls(l) performance where unlabeled data is

simply ignored (compare tuned and rls(l) columns). The performance is often

also “far” from that attained by the full laprls solution (compare laprls and

tuned columns). (4) Finally, note that the behaviour of sparse greedy method in

the supervised case (last two columns of Table 5.2) is very different from the semi-

supervised case (compare tuned and laprls columns): In most situations, one can

indeed get close to the full solution with greedy basis selection in the supervised case,

139

but this is not true for the semi-supervised variant of the algorithm.

Table 5.2: Improvements with hyper-parameter tuning.

Dataset laprls Fixed Tuned rls(l) rls(n, dmax) rls(n)

2moons 0.44 16.45 8.42 20.04 0 0
g50c 11.20 26.79 18.11 18.90 4.37 4.35

coil20bin 6.63 19.09 9.97 13.04 2.22 0.28
usps2vs5 7.26 12.49 11.36 11.29 4.27 4.0
mnist3vs8 3.25 7.06 5.53 5.85 1.40 1.20

pcmac 9.60 14.65 10.40 14.78 3.08 2.26

5.2.2 Benchmarking the quality of Basis selected

In Table 5.3, we report the error rates given by a number of alternative basis selection

schemes which, among the ones already introduced, include (1) Uniform: Intuitively,

a good choice of basis functions seems to be one that covers the data manifold “uni-

formly”. The graph transduction solution maps nodes in the data-similarity graph to

the real line in a locality and label preserving manner. In this method, we sort the

outputs of the graph transduction solution and pick the basis functions corresponding

to indices at intervals ⌈n/d⌉. (2) Greedy (ridge): In preparation for the multiscale

method described next, in this method we replace the ambient RKHS regularizer with

γA
2 ‖β‖2

2 (γA was appropriately scaled to maintain the same ratio between the three

terms). Except for this difference, this method is identical to greedy. (3) Greedy

(ms): In this method, we expand the “dictionary” to include basis functions of mul-

tiple kernel widths 2iσ0, i = −3, . . . 3 where σ0 is the kernel width used for all the

other methods. Then greedy(ridge) is applied in a multiscale setting. The ridge

regularizer has to be used instead of the RKHS norm since the gram matrix asso-

ciated with basis functions at multiple scales is no longer guaranteed to be positive

definite. (4) Sup: This method is included as a gold standard for basis selection. We

140

take the basis set given by the fully supervised sparse greedy method rls(n, dmax).

From the last two columns of Table 5.2, we know this basis set returns performance

close to RLS using all the labels and all the basis functions. Thus, there exists a set

of coefficients that go with this basis set that define a very good decision boundary.

We then obtained the splaprls solution on these basis functions. Results are tab-

ulated in the final column of Table 5.3. Of course, this method is not feasible for

semi-supervised learning since the labels of unlabeled examples are truly unknown.

Note that all methods use the same hyper-parameters. Thus, the difference in

performance is only due to difference in basis set selected.

The following observations can be made: (1) We see that none of the 7 sparse,

semi-supervised basis selection methods are able to do substantially better than the

tuned greedy results reported in Table 5.2. For comparison, the first column re-

ports again the rls(l) baseline. (2) The final column suggests that there exists

better basis functions on which splaprls performance improves substantially, but

semi-supervised schemes are unable to find them. (3) However, on some datasets

(usps25, 2moons) even with a high quality basis set, splaprls is unable to give

satisfactory results. As we will see in the following sections, there is scope for signif-

icant further improvements on all datasets.

Note that care should be taken in comparing other methods against greedy in

Table 5.3 since the hyperparameter values were chosen to optimize the greedy. In

particular, we observed that lasso performance could be significantly improved on

some datasets with hyperparameter tuning, but the main conclusion of this section

remains the same: in their current form, the sparse manifold regularizaton techniques

we have explored fail to find very good basis sets; and sometimes, even when given a

good basis set splaprls performance may not be completely satisfactory.

141

Table 5.3: Comparison of Basis Selection Schemes

Dataset → 2moons g50c coil20bin usps2vs5 mnist3vs8 pcmac
Algorithm ↓

rls(l) 20.04 18.90 13.04 11.29 5.85 14.78
random 17.50 15.17 12.99 14.31 5.27 12.25
uniform 10.71 16.50 12.43 14.58 5.66 11.67
greedy 8.42 18.11 9.97 11.36 5.53 10.40

greedy(r) 8.97 15.75 10.37 11.37 5.31 10.21
greedy(ms) 18.44 43.30 12.82 15.07 7.54 39.72

lasso 17.03 17.60 12.75 11.87 5.51 39.05
lars 17.57 18.06 13.01 12.67 5.80 22.27
sup 2.21 14.37 8.85 11.10 3.77 7.86

5.3 Intrinsic Regularization On Restricted Function Spaces

Consider two 2-dimensional datasets shown in Figure 5.3.

In the T dataset, the unlabeled data is distributed over two perpendicular lines

of unit length corresponding to the two classes respectively so that a horizontal clas-

sification boundary is desirable2. With respect to this particular geometry, consider

the intrinsic norm of a linear function on R2, fw(x, y) = ‖w‖ cos(θ)x + ‖w‖ sin(θ)y,

(x, y) ∈ R2, where ‖w‖ is the ambient norm of the function and θ is the orientation

of the associated weight vector with respect to the x-axis. The intrinsic regularizer

is given by
∫

M ‖∇Mfw‖2 = (‖w‖cos(θ))2 + (‖w‖sin(θ))2 = ‖w‖2 where M is the

data manifold (the two perpendicular lines) and ∇Mf is the gradient of the function

projected along the manifold. Since the ambient and intrinsic norms turn out to be

the same, manifold regularization with a linear kernel simply ignores unlabeled data,

returning the supervised solution with regularization parameter (γA + γI) ! On the

other hand, on the = dataset, the intrinsic norm is ‖w‖2cos2(θ) which, for a fixed

ambient norm, is minimized by the horizontal separator as desired. These simple

2. If the data were fully labeled, linear RLS would learn a horizontal separator.

142

examples illustrate that when working with function spaces of restricted capacity,

the intrinsic regularization penalty is appropriate only for a restricted set of geome-

tries, which real-world data may or may not satisfy (see [32] for discussion on related

issues). Note that standard graph regularization and manifold regularization with

universal kernels do not show similar behaviour as their underlying hypothesis space

includes all functions defined over the set of labeled and unlabeled examples. Under

the conjecture that such effects also happen in the sparse, semi-supervised situation,

we now explore two simple methods to overcome the problem.

5.3.1 Sigmoid Method

In this method, we tighten the intrinsic regularizer by passing outputs through a

sigmoid. For a fixed basis set given by the index set J , instead of (5.2) we solve,

argmin
βJ

R̃J (βJ) =
γA

2
βT
J KJJβJ +

γI

2
sTMs +

1

2
‖Y −KLJβJ‖2 (5.5)

where si = (1+e−ρoi)−1 are values obtained by tightening the outputs oi = (KNJβJ)i

under a sigmoid function given by a parameter ρ. The gradient of R̃ can be easily

computed and passed to, say, a non-linear conjugate gradient solver. Note that un-

like RJ in (5.2), R̃J is not convex, and we are now open to local minima problems.

Non-convexity can be a serious problem for semi-supervised learning as evidenced

by the failure of Transductive SVM methods on problems where a strong non-linear

manifold structure exists [28]. However, to illustrate the effect of using the new in-

trinsic regularization term, we report in Table 5.4 the performance of splaprls, and

its sigmoid version for a fixed basis given by rls(n, dmax).

We initialized the sigmoid method from the solution given by rls(n, dmax) (to

avoid local minima issues) and ran non-linear CG with a stringent stopping criterion

143

Table 5.4: Improvements with Sigmoid Method

Dataset splaprls Sigmoid

2moons 2.21 0.47
g50c 14.37 11.30

coil20bin 8.85 4.09
usps2vs5 11.10 6.11
mnist3vs8 3.77 1.92

pcmac 7.86 6.42

(to ensure that the initial point is not returned pre-maturely). Results in Table 5.4

should be interpreted with care to be the error rate at approximately the local minima

in the non-convex function (5.5) nearest to the fully supervised solution. As can be

seen, the results improve significantly. This method is worth exploring in conjunction

the greedy basis selection approach. However, we postpone this direction for future

work.

5.3.2 Slack Method

Instead of passing the outputs oi through a sigmoid, in this method we allow “slacks”

oi + ξi and setup the problem in the following way,

argmin
βJ ,ξ

γA

2
β⊤

J KJJβJ +
γI

2
(KNJβJ + ξ)⊤M(KNJβJ + ξ) +

1

2
‖Y −KLJβJ − ξL‖2 +

ν

2
‖ξ‖2 (5.6)

Reparameterizing, f = KNJβJ + ξ, we can rewrite the problem above as,

144

argmin
βJ ,f

R̄J (βJ ,f) =
γA

2
β⊤

J KJJβJ +
γI

2
f⊤Mf +

1

2
(f − Ȳ)⊤IL(f − Ȳ) +

ν

2
‖f −KNJβJ‖2 (5.7)

where Ȳ has Y for labeled entries and 0 otherwise, and IL is a diagonal matrix with

1 for labeled entries and 0 otherwise.

The slack method may be interpreted as a form of co-regularized least squares

(see Chapter 4 and [88]) for multiview semi-supervised learning where we maximize

consensus between graph transduction and functions in the span of a set of basis

functions in a least squares sense (last term above). Here, ν is interepreted as a

coupling parameter and the two views may be interpreted as an ambient and an

intrinsic view. We propose a simple alternating optimization of the problem above.

Optimizing f keeping β fixed: We solve the sparse linear system,

(γIM + IL + νI)f = (Ȳ + νo) (5.8)

where o = KNJβ. Note that this step performs regression on graphs similar to graph

transduction, with Ȳ + νo as the target vector. Since matrix-vector products with

M are cheap due to the sparsity of the underlying graph, and with the use of seeding

(starting conjugate gradient iterations from the previous solution), this step is not

expensive.

Optimizing β keeping f fixed: This reduces to a small linear system,

[γAKJJ + νKJNKNJ] βJ = νKJNf (5.9)

145

corresponding to regression on the current f to learn βJ .

For a given basis set indexed by J , we keep alternating until the relative improve-

ment in the objective function falls below a small threshold.

The greedy method can be combined with the slack method to find a basis

set incrementally in the following way: To score a candidate basis function indexed

by j having already selected J , we first find β⋆
j = argminβj

R̄J∪{j} keeping βJ and

f fixed. A closed form expression can be derived. Next, we compute the revised

outputs ō = o + β⋆
jKNj and do a few conjugate gradient iterations3 for the linear

system (γIM + IL + νI)f̄ = (Ȳ + νō) starting from the current f . The objective

value R̄(βJ ; β⋆
j , f̄) is used as the score for candidate j.

The first column in Table 5.5 reports performance of greedy. For the same fixed

basis found by greedy, slack makes significant improvements. Finally, the combi-

nation of slack and greedy is able to recover the performance of full laprls solu-

tion on most datasets.

Table 5.5: Performance of greedy and improvements with slack and its combina-
tion with greedy

Dataset greedy slack greedy+slack laprls
2moons 8.42 4.96 0.45 0.44
g50c 18.11 9.97 9.28 11.20

coil20bin 9.97 9.08 8.50 6.63
usps2vs5 11.36 7.42 6.81 7.26
mnist3vs8 5.53 3.50 3.20 3.25

pcmac 10.40 9.24 9.08 9.60

A fully decoupled method

The slack method may be viewed as coupling graph transduction with regression us-

ing a small set of basis functions. In a fully decoupled method, graph transduction

3. 50 in our implementation. We also re-tuned γA, γI , ν on the validation set.

146

is first used to complete the labeling of the data and then a standard supervised

problem is solved. Note that if the real-valued solution of graph transduction is used

as the label vector, then this fully decoupled method is a special case of slack in

the limit ν → 0, γA → 0 such that γA
ν is a constant hyperparameter. As before, this

method can be combined with greedy to find a good basis set. Such a decoupled

approach gets the following error rates on our datasets, 2moons: 0.45, g50c: 8.44,

coil20bin: 8.01, usps25: 9.04, mnist3vs8: 3.02, pcmac: 8.09. In problems where the

manifold assumption is satisfied to a strong degree and the tradeoff between ambi-

ent and intrinsic regularization is not strictly necessary, we recommend this simple

approach for sparse, semi-supervised learning, avoiding altogether the complication

of using the intrinsic regularizer on restricted function spaces. On other problems

coupling might be necessary e.g., usps25. Another example is demonstrated in [107]

where links between documents are used to derive a graph regularizer for web page

categorization, but good labels are difficult to induce based on the link graph alone.

5.4 Conclusion

One may be inclined to treating sparse methods as black boxes with which to spar-

sify semi-supervised solutions. However, when a function space is severely restricted,

one needs to be careful whether the manifold/cluster assumptions for semi-supervised

learning can still be effectively implemented. We believe that the main contribution

of this paper is to provide insight into the nature of sparse manifold regularization.

We have suggested modifications to the basic sparse techniques that eventually lead

to performance close to the full manifold regularization solution by overcoming prob-

lems related to the intrinsic regularizer. As future work, we plan to explore these

modifications in conjunction with l1 regularization and multi-scale methods.

147

10
0

10
1

10
2

0

0.1

0.2

0.3

0.4

0.5

2MOONS

Number of Basis Functions

E
rr

or
 R

at
e

rls(n,d)
greedy
random
rls(l)

10
0

10
1

10
2

0

0.1

0.2

0.3

0.4

0.5

G50C

Number of Basis Functions

E
rr

or
 R

at
e

10
0

10
1

10
2

10
3

0

0.1

0.2

0.3

0.4

0.5

COIL20bin

Number of Basis Functions

E
rr

or
 R

at
e

10
0

10
1

10
2

10
3

0

0.1

0.2

0.3

0.4

0.5
USPS25

Number of Basis Functions

E
rr

or
 R

at
e

10
0

10
1

10
2

10
3

0

0.1

0.2

0.3

0.4

0.5
MNIST3vs8

Number of Basis Functions

E
rr

or
 R

at
e

10
0

10
1

10
2

10
3

0

0.1

0.2

0.3

0.4

0.5

PCMAC

Number of Basis Functions

E
rr

or
 R

at
e

Figure 5.1: How sparse methods approach the full solution.

148

Figure 5.2: T (left) and = (right) datasets

CHAPTER 6

LARGE-SCALE SEMI-SUPERVISED LINEAR METHODS

In this chapter, we present a family of semi-supervised linear support vector classifiers

that are designed to handle partially-labeled sparse datasets with possibly very large

number of examples and features. At their core, our algorithms employ recently devel-

oped Modified Finite Newton primal techniques. We provide (1) a fast, multi-switch

implementation of linear Transductive SVM (TSVM) that is significantly more effi-

cient and scalable than currently used dual techniques, (2) a large-scale variant of the

Deterministic Annealing (DA) algorithm for optimizing semi-supervised SVMs. We

conduct an empirical study on several classification tasks which confirms the value of

these methods in large scale semi-supervised settings. Our algorithms are implemented

in SVMlin, a public domain software package.

6.1 Introduction

Consider the following situation: In a single web-crawl, search engines like Yahoo! and

Google index billions of documents. Only a very small fraction of these documents

can possibly be hand-labeled by human editorial teams and assembled into topic

directories. In information retrieval relevance feedback, a user labels a small number

of documents returned by an initial query as being relevant or not. The remaining

documents form a massive collection of unlabeled data. Despite its natural and

pervasive need, solutions to the problem of utilizing unlabeled data with labeled

examples have only recently emerged in machine learning literature. Whereas the

abundance of unlabeled data is frequently acknowledged as a motivation in most

papers, the true potential of semi-supervised learning in large scale settings is yet to

be systematically explored. This appears to be partly due to the lack of scalable tools

149

150

to handle large volumes of data.

In this chapter, we propose extensions of linear Support Vector Machines (SVMs)

for semi-supervised classification. Linear techniques are often the method of choice

in many applications due to their simplicity and interpretability. When data appears

in a rich high-dimensional representation, linear functions often provide a sufficiently

complex hypothesis space for learning high-quality classifiers. This has been estab-

lished, for example, for document classification with linear SVMs in numerous studies.

We highlight the main contributions of this chapter.

1. We outline an implementation for a variant of TSVM [57] designed for lin-

ear semi-supervised classification on large, sparse datasets. As compared to

currently used dual techniques (e.g., as implemented in SVMlight), our method

effectively exploits data sparsity and linearity of the problem to provide superior

scalability. Additionally, we propose a multiple switching heuristic that further

improves TSVM training by an order of magnitude. These speed enhancements

turn TSVM into a feasible tool for large scale applications.

2. We propose a large-scale linear variant of the Deterministic Annealing (DA)

technique (Chapter 3).

3. We conduct an experimental study on many high-dimensional document classi-

fication tasks involving hundreds of thousands of examples. This study clearly

shows the utility of these tools for very large scale problems.

4. We outline an implementation of Linear Laplacian RLS and SVM using similar

techniques and building on the observations made in Chapter 5. This method

can be applied in settings where a similarity graph is available encoding pairwise

relations between examples (e.g., hyperlinked documents).

151

The modified finite Newton algorithm of [62] for fast training of linear SVMs,

a key subroutine for our algorithms, is outlined in section 6.2. Its semi-supervised

extensions, (TSVM and DA) of this algorithm are presented in sections 6.3 and 6.4.

Experimental results with this implementation are reported in section 6.5. Section 6.6

contains some concluding comments.

All the algorithms described in this chapter are implemented in a public domain

software, SVMlin (see section 6.5) which can be used for fast training of linear SVMs

for supervised and semi-supervised classification problems.

6.2 Modified Finite Newton Linear l2-SVM

The modified finite Newton l2-SVM method [62] (abbreviated l2-SVM-MFN) is a

recently developed training algorithm for linear SVMs that is ideally suited to sparse

datasets with large number of examples and possibly large number of features.

Given a binary classification problem with l labeled examples {xi, yi}l
i=1 where the

input patterns xi ∈ R
d (e.g documents) and the labels yi ∈ {+1,−1}, l2-SVM-MFN

provides an efficient primal solution to the following SVM optimization problem:

w⋆ = argmin
w∈Rd

1

2

l∑

i=1

l2(yiw
T xi) +

γ

2
‖w‖2 (6.1)

where l2 is the l2-SVM loss given by l2(z) = max(0, 1 − z)2, γ is a real-valued

regularization parameter1 and the final classifier is given by sign(w⋆T x).

This objective function differs from the standard SVM problem in some respects.

First, instead of using the hinge loss as the data fitting term, the square of the hinge

loss (or the so-called quadratic soft margin loss function) is used. This makes the

1. γ = 1/C where C is the standard SVM parameter.

152

objective function continuously differentiable, allowing easier applicability of gradi-

ent techniques. Secondly, the bias term (“b”) is also regularized. In the problem

formulation of Eqn. 6.1, it is implicitly assumed that an additional component in

the weight vector and a constant feature in the example vectors have been added to

indirectly incorporate the bias. This formulation combines the simplicity of a least

squares aspect with algorithmic advantages associated with SVMs.

We consider a version of l2-SVM-MFN where a weighted quadratic soft margin

loss function is used.

min
w

f(w) =
1

2

∑

i∈(w)

cil2(yiw
Txi) +

γ

2
‖w‖2 (6.2)

Here we have rewritten Eqn. 6.1 in terms of the support vector set (w) = {i :

yi (wTxi) < 1}. Additionally, the loss associated with the ith example has a cost

ci. f(w) refers to the objective function being minimized, evaluated at a candidate

solution w. Note that if the index set (w) were independent of w and ran over all

data points, this would simply be the objective function for weighted linear regularized

least squares (RLS).

Following [62], we observe that f is a strictly convex, piecewise quadratic, contin-

uously differentiable function having a unique minimizer. The gradient of f at w is

given by:

∇ f(w) = γ w +XT
(w)C(w)

[

X(w)w − Y(w)

]

where X(w) is a matrix whose rows are the feature vectors of training points corre-

sponding to the index set (w), Y(w) is a column vector containing labels for these

points, and C(w) is a diagonal matrix that contains the costs ci for these points along

its diagonal.

153

l2-SVM-MFN is a primal algorithm that uses the Newton’s Method for uncon-

strained minimization of a convex function. The classical Newton’s method is based

on a second order approximation of the objective function, and involves updates of

the following kind:

wk+1 = wk + δk nk (6.3)

where the step size δk ∈ R, and the Newton direction nk ∈ R
d is given by: nk =

−[∇2 f(wk)]−1∇ f(wk). Here, ∇ f(wk) is the gradient vector and ∇2 f(wk) is the

Hessian matrix of f at wk. However, the Hessian does not exist everywhere, since

f is not twice differentiable at those weight vectors w where wT xi = yi for some

index i.2 Thus a generalized definition of the Hessian matrix is used. The modified

finite Newton procedure proceeds as follows. The step w̄k = wk + nk in the Newton

direction can be seen to be given by solving the following linear system associated

with a weighted linear regularized least squares problem over the data subset defined

by the indices (wk):

[

γI +XT
(wk)

C(wk)X(wk)

]

w̄k = XT
(wk)

C(wk)Y(wk) (6.4)

where I is the identity matrix. Once w̄k is obtained, wk+1 is obtained from Eqn. 6.3

by setting wk+1 = wk + δk(w̄k − wk) after performing an exact line search for δk,

i.e., by exactly solving a one-dimensional minimization problem:

δk = argmin
δ≥0

φ(δ) = f
(

wk + δ(w̄k − wk)
)

(6.5)

2. In the neighborhood of such a w, the index i leaves or enters (w). However, at w, yiw
T xi = 1.

So f is continuously differentiable inspite of these index jumps.

154

The modified finite Newton procedure has the property of finite convergence to the

optimal solution. The key features that bring scalability and numerical robustness

to l2-SVM-MFN are: (a) Solving the regularized least squares system of Eqn. 6.4

by a numerically well-behaved Conjugate Gradient scheme referred to as CGLS [48],

which is designed for large, sparse data matrices X. The benefit of the least squares

aspect of the loss function comes in here to provide access to a powerful set of tools

in numerical computation. (b) Due to the one-sided nature of margin loss functions,

these systems are required to be solved over only restricted index sets (w) which can

be much smaller than the whole dataset. This also allows additional heuristics to be

developed such as terminating CGLS early when working with a crude starting guess

like 0, and allowing the following line search step to yield a point where the index

set (w) is small. Subsequent optimization steps then work on smaller subsets of the

data. Below, we briefly discuss the CGLS and Line search procedures. We refer the

reader to [62] for full details.

6.2.1 CGLS

CGLS [48] is a special conjugate-gradient solver that is designed to solve, in a nu-

merically robust way, large, sparse, weighted regularized least squares problems such

as the one in Eqn. 6.4. Starting with a guess solution, several specialized conjugate-

gradient iterations are applied to get w̄k that solves Eqn. 6.4. The major expense in

each iteration consists of two operations of the form Xj(wk)p and XT
j(wk)

q. If there

are n0 non-zero elements in the data matrix, these involve O(n0) cost. It is worth

noting that, as a subroutine of l2-SVM-MFN, CGLS is typically called on a small

subset, Xj(wk) of the full data set. To compute the exact solution of Eqn. 6.4, r

iterations are needed, where r is the rank of Xj(wk). But, in practice, such an exact

155

solution is unnecessary. CGLS uses an effective stopping criterion based on gradient

norm for early termination (involving a tolerance parameter ǫ). The total cost of

CGLS is O(tcglsn0) where tcgls is the number of iterations, which depends on ǫ and

the condition number of Xj(wk), and is typically found to be very small relative to the

dimensions of Xj(wk) (number of examples and features). Apart from the storage of

Xj(wk), the memory requirements of CGLS are also minimal: only five vectors need

to be maintained, including the outputs over the currently active set of data points.

Finally, an important feature of CGLS is worth emphasizing. Suppose the solution

w of a regularized least squares problem is available, i.e the linear system in Eqn. 6.4

has been solved using CGLS. If there is a need to solve a perturbed linear system,

it is greatly advantageous in many settings to start the CG iterations for the new

system with w as the initial guess. This is called seeding. If the starting residual

is small, CGLS can converge much faster than with a guess of 0 vector. The utility

of this feature depends on the nature and degree of perturbation. In l2-SVM-MFN,

the candidate solution wk obtained after line search in iteration k is seeded for the

CGLS computation of w̄k. Also, in tuning γ over a range of values, it is valuable to

seed the solution for a particular γ onto the next value. For the semi-supervised SVM

implementations with l2-SVM-MFN, we will seed solutions across linear systems with

slightly perturbed label vectors, data matrices and costs.

6.2.2 Line Search

Given the vectors wk,w̄k in some iteration of l2-SVM-MFN, the line search step

requires us to solve Eqn. 6.5. The one-dimensional function φ(δ) is the restriction

of the objective function f on the ray from wk onto w̄k. Hence, like f , φ(δ) is

also a continuously differentiable, strictly convex, piecewise quadratic function with a

156

unique minimizer. φ′ is a continuous piecewise linear function whose root, δk, can be

easily found by sorting the break points where its slope changes and then performing a

sequential search on that sorted list. The cost of this operation is negligible compared

to the cost of the CGLS iterations.

6.2.3 Complexity

l2-SVM-MFN alternates between calls to CGLS and line searches until the support

vector set (wk) stabilizes upto a tolerance parameter τ , i.e., if ∀i ∈ (wk), yiw̄
kTxi <

1+τ and ∀i /∈ (wk), yiw̄
kTxi ≥ 1−τ . Its computational complexity isO(tmfnt̄cglsn0)

where tmfn is the number of outer iterations of CGLS calls and line search, and t̄cgls

is the average number of CGLS iterations. The number of CGLS iterations to reach

a relative error of ǫ can be bounded in terms of ǫ and the condition number of the

left-hand-side matrix in Eqn 6.4 [15]. In practice, tmfn and t̄cgls depend on the data

set and the tolerances desired in the stopping criterion, but are typically very small.

As an example of typical behavior: on a Reuters [68] text classification problem (top

level category CCAT versus rest) involving 804414 examples and 47236 features,

tmfn = 7 with a maximum of tcgls = 28 CGLS iterations; on this dataset l2-SVM-

MFN converges in about 100 seconds on an Intel 3GHz, 2GB RAM machine3. The

practical scaling is linear in the number of non-zero entries in the data matrix [62].

6.2.4 Other Loss functions

All the discussion in this chapter can be applied to other loss functions such as Huber’s

Loss and rounded Hinge loss using the modifications outlined in [62].

We also note a recently proposed linear time training algorithm for hinge loss [61].

3. For this experiment, γ is chosen as in [61]; ǫ = τ = 10−6.

157

While detailed comparative studies are yet to be conducted, preliminary experiments

have shown that l2-SVM-MFN and the methods of [61] are competitive with each

other (at their default tolerance parameters).

We now assume that in addition to l labeled examples, we have u unlabeled

examples {x′
j}u

j=1. Our goal is to extend l2-SVM-MFN to utilize unlabeled data,

typically when l ≪ u.

6.3 Fast Multi-switch Transductive SVMs

Recall from Chapter 3, Eqn. 3.1, that the following optimization problem is setup for

standard TSVM4:

min
w,{y′j}u

j=1

γ

2
‖w‖2 +

1

2l

l∑

i=1

V (yi wT xi) +
γ′

2u

u∑

j=1

V (y′j wT x′
j)

subject to:
1

u

u∑

j=1

max[0, sign(wT x′
j)] = r

where for the loss function V (z), the hinge loss l1(z) = max(0, 1−z) is normally used.

We use a slightly different notation than Chapter 3 to match the SVMlin implemen-

tation. The labels on the unlabeled data, y′1 . . . y
′
u, are {+1,−1}-valued variables

in the optimization problem. In other words, TSVM seeks a hyperplane w and a

labeling of the unlabeled examples, so that the SVM objective function is minimized,

subject to the constraint that a fraction r of the unlabeled data be classified positive.

Recall that SVM margin maximization in the presence of unlabeled examples can

be interpreted as an implementation of the cluster assumption. In the optimization

problem above, γ′ is a user-provided parameter that provides control over the influ-

4. The bias term is typically excluded from the regularizer, but this factor is not expected to
make any significant difference.

158

ence of unlabeled data. For example, if the data has distinct clusters with a large

margin, but the cluster assumption does not hold, then γ′ can be set to 0 and the

standard SVM is retrieved. If there is enough labeled data, γ, γ′ can be tuned by

cross-validation. An initial estimate of r can be made from the fraction of labeled

examples that belong to the positive class and subsequent fine tuning can be done

based on validation performance.

This optimization is implemented in [57] by first using an inductive SVM to label

the unlabeled data and then iteratively switching labels and retraining SVMs to

improve the objective function. The TSVM algorithm wraps around an SVM training

procedure. The original (and widely popular) implementation of TSVM uses the

SVMlight software. There, the training of SVMs in the inner loops of TSVM uses dual

decomposition techniques. As shown by experiments in [62], in sparse, linear settings

one can obtain significant speed improvements with l2-SVM-MFN over SVMlight.

Thus, by implementing TSVM with l2-SVM-MFN, we expect similar improvements

for semi-supervised learning on large, sparse datasets. The l2-SVM-MFN retraining

steps in the inner loop of TSVM are typically executed extremely fast by using seeding

techniques. Additionally, we also propose a version of TSVM where more than one

pair of labels may be switched in each iteration. These speed-enhancement details

are discussed in the following subsections.

6.3.1 Implementing TSVM Using l2-SVM-MFN

The TSVM algorithm with l2-SVM-MFN closely follows the presentation in [57]. A

classifier is obtained by first running l2-SVM-MFN on just the labeled examples.

Temporary labels are assigned to the unlabeled data by thresholding the soft outputs

of this classifier so that the fraction of the total number of unlabeled examples that are

159

temporarily labeled positive equals the parameter r. Then starting from a small value

of γ′, the unlabeled data is gradually brought in by increasing γ′ by a certain factor in

the outer loop. This gradual increase of the influence of the unlabeled data is a way to

protect TSVM from being immediately trapped in a local minimum (see discussion

on Annealing in Chapter 3). An inner loop identifies pairs of unlabeled examples

with positive and negative temporary labels such that switching these labels would

decrease the objective function. l2-SVM-MFN is then retrained with the switched

labels, starting the CGLS/line-search iterations with the current classifier.

6.3.2 Multiple Switching

The TSVM algorithm presented in [57] involves switching a single pair of labels at a

time. We propose a variant where upto S pairs are switched such that the objective

function improves. Here, S is a user controlled parameter. Setting S = 1 recovers the

original TSVM algorithm, whereas setting S = u/2 switches as many pairs as possible

in the inner loop of TSVM. The implementation is conveniently done as follows:

1. Identify unlabeled examples with active indices and currently positive labels.

Sort corresponding outputs in ascending order. Let the sorted list be L+.

2. Identify unlabeled examples with active indices and currently negative labels.

Sort corresponding outputs in descending order. Let the sorted list be L−.

3. Pick pairs of elements, one from each list, from the top of these lists until either

a pair is found such that the output from L+ is greater than the output from L−, or

if S pairs have been picked.

4. Switch the current labels of these pairs.

160

Using arguments similar to Theorem 2 in [57], we can show the following.

Proposition 6.3.1. Transductive L2-SVM-MFN with multiple-pair switching con-

verges in finite number of steps.

Proof: The outer loop annealing loop clearly terminates in finite number of steps.

Each call to l2-SVM-MFN terminates in finite number of iterations due to Theorem

1 in [62]. We only need to show that label switching loop also has finite termination.

Let J(w, Y ′) be the value of the TSVM objective function for some candidate weight

vector w and candidate label vector Y ′ = [y′1 . . . y
′
u] over the unlabeled data. Let

w(Y ′), Y ′ be the operating variables at the end of an iteration of loop 2 where w(Y ′) =

argminw∈Rd J(w, Y ′). After switching labels, let the new operating label vector be

Y ′′. It is easy to see that:

J(w(Y ′), Y ′) > J(w(Y ′), Y ′′) ≥ J(w(Y ′′), Y ′′)

The second inequality follows since w(Y ′′) minimizes J(w, Y ′′) over all w. To see the

first inequality observe that for any pair of data points (say with indices i, j) whose la-

bels are switched, the following conditions are satisfied: y′i = 1, y′j = −1,w(Y ′)T x′
i <

1,−w(Y ′)T x′
j < 1,w(Y ′)T x′

i < w(Y ′)T x′
j . The terms contributed by this pair to

the objective function decrease after switching labels since the switching conditions

imply the following:

max[0, 1 − wT x′
i]

2 + max[0, 1 + wT x′
j]

2 = (1 − wT x′
i)

2 + (1 + wT x′
j)

2

> (1 + wT x′
i)

2 + (1 − wT x′
j)

2 ≥ max[0, 1 + wT x′
i]

2 + max[0, 1 − wT x′
j]

2

Thus, swapping the labels of multiple pairs that satisfy the switching conditions

161

reduces the objective function.

Since at the end of consecutive iterations J(w(Y ′), Y ′) > J(w(Y ′′), Y ′′), Loop 2

must terminate in finite number of steps because there are only a finite number of

possible label vectors.

We are unaware of any prior work that suggests and evaluates this simple multiple-

pair switching heuristic. Our experimental results in section 6.5 establish that this

heuristic is remarkably effective in speeding up TSVM training while maintaining

generalization performance.

6.3.3 Seeding

The effectiveness of l2-SVM-MFN on large sparse datasets combined with the effi-

ciency gained from seeding w in the re-training steps (after switching labels or after

increasing γ′) make this algorithm quite attractive. Consider an iteration of the inner

label switching loop of TSVM where a new pair of labels has been switched, and the

solution w from the last retraining of l2-SVM-MFN is available for seeding. Accord-

ing to Theorem 1 in [62], when the last l2-SVM-MFN converged, its solution w is

given by the linear system5:

[

γI +XT
I(w)CI(w)XI(w)

]

w = XT
I(w)CI(w)Y

where Y is the current label vector. When labels Yi, Yj are switched, the label vector

is updated as:

Y = Y + 2eij

5. The subsequent line search does not change this w; therefore, the optimality conditions are
checked immediately after the CGLS step

162

where eij is a vector whose elements zero everywhere except in the ith and the jth

position which are +1 and -1 or -1 and +1 respectively. Note also that if i, j ∈ (w)

the re-training of L2-SVM-MFN with w as the starting guess immediately encounters

a call CGLS to solve the following perturbed system:

[

γI +XT
(w)C(w)X(w)

]

w̃ = XT
(w)C(w)

[
Y + 2eij

]

The starting residual vector r0 is given by:

r0 = XT
(w)C(w)

[
Y + 2eij

]
−
[

γI +XT
(w)C(w)X(w)

]

w

= r(w) + 2XT
(w)C(w)eij

≤ ǫ+ 2γ′‖xi − xj‖

where r(w) in the second step is the final residual of w which fell below ǫ at the

convergence of the last re-training. In applications like Text categorization, TFIDF

feature vectors are often length normalized and have positive entries. Therefore,

‖xi − xj‖ ≤
√

2. This gives the following bound on the starting residual:

r0 ≤ ǫ+ 2
√

2γ′

which is much smaller than a bound of n
√
nγ′ with a zero starting vector.

For a fixed γ′, the complexity is O(nswitchest̄mfnt̄cglsn0), where nswitches is the

number of label switches. Typically, nswitches is expected to strongly depend on

the data set and also on the number of labeled examples. Since it is difficult to

apriori estimate the number of switches, this is an issue that is best understood from

empirical observations.

163

6.4 Linear Deterministic Annealing S3VMs

In Chapter 3, we developed a Deterministic Annealing framework that provides better

resistance to suboptimal local minima. The linear version of Eqn. 3.7 is as follows6,

w⋆
T = argmin

w,{pj}u
j=1

γ

2
‖w‖2 +

1

2l

l∑

i=1

l2(yiw
Txi)

+
γ′

2u

u∑

j=1

(

pj l2(w
Tx′j) + (1 − pj)l2(−wTx′j)

)

+
T

2u

u∑

j=1

[pj log pj + (1 − pj) log (1 − pj)] (6.6)

Recall that the “temperature” parameter T parameterizes a family of objective func-

tions. The objective function for a fixed T is minimized under the following class

balancing constraint:

1

u

u∑

j=1

pj = r (6.7)

where r is the fraction of the number of unlabeled examples belonging to the positive

class. As in TSVM, r is treated as a user-provided parameter. It may also be

estimated from the labeled examples.

The solution to the optimization problem above is tracked as the temperature

parameter T is lowered to 0.

We monitor the value of the objective function in the optimization path and return

the solution corresponding to the minimum value achieved.

The optimization is done in stages, starting with high values of T and then grad-

6. We use a slightly different notation to match the SVMlin implementation.

164

ually decreasing T towards 0. For each T , the objective function in Eqn 6.6 (subject

to the constraint in Eqn 6.7) is optimized by alternating the minimization over w

and p = [p1 . . . pu] respectively specializing the algorithm in Section 3.5 to the linear

case. Fixing p, the optimization over w is done by l2-SVM-MFN with seeding. Fixing

w, the optimization over p can also be done easily as described below. Both these

problems involve convex optimization and can be done exactly and efficiently. We

now provide some details.

6.4.1 Optimizing w

We describe the steps to efficiently implement the l2-SVM-MFN loop for optimizing w

keeping p fixed. The call to l2-SVM-MFN is made on the data X̂ =
[

XT X ′T X ′T
]T

whose first l rows are formed by the labeled examples, and the next 2u rows are formed

by the unlabeled examples appearing as two repeated blocks. The associated label

vector and cost matrix are given by

Ŷ = [y1, y2...yl,

u
︷ ︸︸ ︷

1, 1, ...1,

u
︷ ︸︸ ︷

−1,−1...− 1]

C = diag







l
︷ ︸︸ ︷

1

l
...

1

l
,

u
︷ ︸︸ ︷

γ′ p1
u

...
γ′ pu
u

u
︷ ︸︸ ︷

γ′(1 − p1)

u
...
γ′(1 − pu)

u







(6.8)

Even though each unlabeled data contributes two terms to the objective function,

effectively only one term contributes to the complexity. This is because matrix-vector

products, which form the dominant expense in l2-SVM-MFN, are performed only on

unique rows of a matrix. The output may be duplicated for duplicate rows. Infact, we

can re-write the CGLS calls in l2-SVM-MFN so that the unlabeled examples appear

only once in the data matrix. Consider the CGLS call at some iteration where the

165

active index set is  = (w) for some current candidate weight vector w:

[

γI + X̂T
 CX̂

]

w̄ = X̂TCŶ (6.9)

Note that if |wT x′
j | ≥ 1, the unlabeled example x′

j appears as one row in the data

matrix X̂ with label given by −sign(wT x′
j). If |wT x′

j | < 1, the unlabeled example

x′
j appears as two identical rows X̂ with both labels. Let l ∈ 1 . . . l be the indices

of the labeled examples in the active set, ′1 ∈ 1 . . . u be the indices of unlabeled

examples with |wT x′
j | ≥ 1 and ′2 ∈ 1 . . . u be the indices of unlabeled examples with

|wT x′
j | < 1. Note that the index of every unlabeled example appears in one of these

sets i.e, ′1 ∪ ′2 = 1 . . . u. Eqn. 6.4 may be re-written as:




γI +

1

l

∑

i∈l

xT
i xi +

γ′

u

∑

j∈′1

cjx
′T
j xj +

γ′

u

∑

j∈′2

x′T
j xj




 w̄ =

1

l

∑

i∈l

yixi −
γ′

u

∑

j∈′1

cjsign(wT xj)xj +
γ′

u

∑

j∈′2

(2pj − 1)xj

where cj = pj if sign(wT x′
j) = −1 and cj = 1 − pj if sign(wT x′

j) = 1. Re-writing in

matrix notation, we obtain an equivalent linear system that can be solved by CGLS:

[

γI + X̃T C̃X̃
]

w̄ = X̃T C̃Ỹ (6.10)

where X̃ = [XT
l

X ′], C̃ is a diagonal matrix and Ỹ is the vector of effectively active

166

labels. These are defined by:

C̃jj =
1

l
, Ỹj = yi j ∈ 1 . . . |l|

C̃(j+|l|)(j+|l|) =
γ′pj
u

, Ỹj+|l| = 1 if j ∈ 1 . . . u , j ∈ ′1, sign(wT x′
j) = −1

C̃(j+|l|)(j+|l|) =
γ′(1 − pj)

u
, Ỹj+|l| = −1 if j ∈ 1 . . . u j ∈ ′1, sign(wT x′

j) = 1

C̃(j+|l|)(j+|l|) =
γ′

u
, Ỹj+|l| = (2pj − 1) if j ∈ 1 . . . u j ∈ ′2 (6.11)

Thus, CGLS needs to only operate on data matrices with one instance of each

unlabeled example using a suitably modified cost matrix and label vector.

After the CGLS step, one needs to check the optimality conditions. The optimality

conditions can be re-written as:

∀ i ∈ l yiōi ≤ 1 + ǫ

∀ i ∈ cl yiōi ≥ 1 − ǫ

∀ j ∈ ′1 |ō′j | ≥ 1 − ǫ

∀ j ∈ ′2 |ō′j | ≤ 1 + ǫ

For the subsequent line search step, we reassemble appropriate output and label

vectors to call the line search routine outlined in section 6.2.2.

6.4.2 Optimizing p

For the latter problem of optimizing p for a fixed w, we construct the Lagrangian

(see Section 3.5.1) and obtain:

167

pj =
1

1 + e
gj−2ν

T

(6.12)

where gj = γ′[l2(wTx′j) − l2(−wTx′j)]. Substituting this expression in the balance

constraint in Eqn. 6.7, we get a one-dimensional non-linear equation in 2ν:

1

u

u∑

j=1

1

1 + e
gi−2ν

T

= r

The root is computed by using a hybrid combination of Newton-Raphson iterations

and the bisection method together with a carefully set initial value.

6.4.3 Stopping Criteria

For a fixed T , the alternate minimization of w and p proceeds until some stopping

criterion is satisfied. A natural criterion is the mean Kullback-Liebler divergence

(relative entropy) between current values of pi and the values, say qi, at the end of

last iteration. Thus the stopping criterion for fixed T is:

KL(p,q) =
u∑

j=1

pj log
pj
qj

+ (1 − pj) log
1 − pj
1 − qj

< uǫ

A good value for ǫ is 10−6. As T approaches 0, the variables pj approach 0 or 1. The

temperature may be decreased in the outer loop until the total entropy falls below a

threshold, which we take to be ǫ = 10−6 as above, i.e.,

H(p) = −
u∑

j=l

(
pj log pj + (1 − pj) log (1 − pj)

)
< uǫ

168

The TSVM objective function,

γ

2
‖w‖2 +

1

2l

l∑

i=1

l2(yi (wT xi) +
γ′

2u

u∑

j=1

max
[

0, 1 − |wT x′
j |
]2

is monitored as the optimization proceeds. The weight vector corresponding to the

minimum transductive cost in the optimization path is returned as the solution.

6.5 Empirical Study

Semi-supervised learning experiments were conducted to test these algorithms on

four medium-scale datasets (aut-avn, real-sim, ccat and gcat) and three large scale

(full-ccat,full-gcat,kdd99) datasets. These are listed in Table 6.1. All experiments

were performed on Intel Xeon CPU 3GHz, 2GB RAM machines.

Software

For software implementation used for benchmarking in this section, we point the

reader to the SVMlin package available at

http://www.cs.uchicago.edu/~vikass/svmlin.html

Datasets

The aut-avn and real-sim binary classification datasets come from a collection of

UseNet articles7 from four discussion groups, for simulated auto racing, simulated

aviation, real autos, and real aviation. The ccat and gcat datasets pose the problem

of separating corporate and government related articles respectively; these are the

top-level categories in the RCV1 training data set [68]. full-ccat and full-gcat are

7. Available at: http://www.cs.umass.edu/∼mccallum/data/sraa.tar.gz

169

the corresponding datasets containing all the 804414 training and test documents

in the RCV1 corpus. These data sets create an interesting situation where semi-

supervised learning is required to learn different low density separators respecting

different classification tasks in the same input space. The kdd99 dataset is from the

KDD 1999 competition task to build a network intrusion detector, a predictive model

capable of distinguishing between “bad” connections, called intrusions or attacks, and

“good” normal connections. This is a relatively low-dimensional dataset containing

about 5 million examples.

Table 6.1: Two-class datasets. d : data dimensionality, n̄0 : average sparsity, l + u :
number of labeled and unlabeled examples, t : number of test examples, r : positive
class ratio.

Dataset d n̄0 l + u t r

aut-avn 20707 51.32 35588 35587 0.65
real-sim 20958 51.32 36155 36154 0.31

ccat 47236 75.93 17332 5787 0.46
gcat 47236 75.93 17332 5787 0.30

full-ccat 47236 76.7 804414 - 0.47
full-gcat 47236 76.7 804414 - 0.30
kdd99 128 17.3 4898431 - 0.80

For the medium-scale datasets, the results below are averaged over 10 random

stratified splits of training (labeled and unlabeled) and test sets. The detailed per-

formance of SVM, DA and TSVM (single and maximum switching) is studied as

a function of the amount of labeled data in the training set. For the large scale

datasets full-ccat, full-gcat and kdd99, we are mainly interested in computation times;

a transductive setting is used to study performance in predicting the labels of unla-

beled data on single splits. On full-ccat and full-gcat , we train SVM, DA and TSVM

with l = 100, 1000 labels; for kdd99 we experiment with l = 1000 labels.

Since the two classes are fairly well represented in these datasets, we report error

170

rates, but expect our conclusions to also hold for other performance measures such as

F-measure. We use a default values of γ = 0.001, and γ′ = 1 for all datasets except8

for aut-avn and ccat where γ′ = 10. In the outer loops of DA and TSVM, we

reduced T and increased γ′ by a factor of 1.5 starting from T = 10 and γ′ = 10−5.

Minimization of Objective Function

We first examine the effectiveness of DA, TSVM with single switching (S=1) and

TSVM with maximum switching (S=u/2) in optimizing the objective function. These

three procedures are labeled DA,TSVM(S=1) and TSVM(S=max) in Figure 6.1,

where we report the minimum value of the objective function with respect to varying

number of labels on aut-avn, real-sim, ccat and gcat.

The following observations can be made.

1. Strikingly, multiple switching leads to no loss of optimization as compared to

single switching. Indeed, the minimum objective value plots attained by single

and multiple switching are virtually indistinguishable in Figure 6.1.

2. As compared to TSVM(S=1 or S=max), DA performs significantly better opti-

mization on aut-avn and ccat; and slightly, but consistently better optimization

on real-sim and gcat. These observations continue to hold for full-ccat and full-

gcat as reported in Table 6.2 where we only performed TSVM experiments with

S=max. Table 6.3 reports that DA gives a better minimum on the kdd99 also.

8. This produced better results for both TSVM and DA.

171

Figure 6.1: DA versus TSVM(S=1) versus TSVM(S=max): Minimum value of ob-
jective function achieved.

45 89 178 356 712 1424
0.65

0.7

0.75
aut−avn

m
in

 o
b

j.
 v

a
lu

e

labels
46 91 181 362 724 1447

0.1

0.15

0.2

0.25

0.3
real−sim

m
in

 o
b

j.
 v

a
lu

e

labels

44 87 174 348 695 1389
0.4

0.5

0.6

0.7

0.8
ccat

m
in

 o
b

j.
 v

a
lu

e

labels
44 87 174 348 695 1389

0.1

0.15

0.2
gcat

m
in

 o
b

j.
 v

a
lu

e

labels

DA

TSVM(S=1)

TSVM(S=max)

Generalization Performance

In Figure 6.2 we plot the mean error rate on the (unseen) test set with respect

to varying number of labels on aut-avn, real-sim, ccat and gcat. In Figure 6.3, we

superimpose these curves over the performance curves of a standard SVM which

ignores unlabeled data. Tables 6.4, 6.5 report the corresponding results for full-

ccat, full-gcat and kdd99.

The following observations can be made.

1. Comparing the performance of SVM against the semi-supervised algorithms in

172

Table 6.2: Comparison of minimum value of objective functions attained by TSVM
(S=max) and DA on full-ccat and full-gcat.

full-ccat full-gcat

l, u TSVM DA TSVM DA
100, 402107 0.1947 0.1940 0.1491 0.1491
100, 804314 0.1945 0.1940 0.1500 0.1499

1000, 402107 0.2590 0.2588 0.1902 0.1901
1000, 804314 0.2588 0.2586 0.1907 0.1906

Table 6.3: Comparison of minimum value of objective functions attained by TSVM
(S=max) and DA on kdd99

l, u TSVM DA
1000, 4897431 0.0066 0.0063

Figure 6.3, the benefit of unlabeled data for boosting generalization performance

is evident on all datasets. This is true even for moderate number of labels,

though it is particularly striking towards the lower end. On full-ccat and full-

gcat too one can see significant gains with unlabeled data. On kdd99, SVM

performance with 1000 labels is already very good.

2. In Figure 6.2, we see that on aut-avn, DA outperforms TSVM significantly.

On real-sim, TSVM and DA perform very similar optimization of the trans-

duction objective function (Figure 6.1), but appear to return very different

solutions. The TSVM solution returns lower error rates, as compared to DA,

on this dataset. On ccat, DA performed a much better optimization (Figure 6.1)

but this does not translate into major error rate improvements. DA and TSVM

are very closely matched on gcat. From Table 6.4 we see that TSVM and DA

are competitive. On kdd99 (Table 6.5), DA gives the best results.

173

Figure 6.2: Error rates on Test set: DA versus TSVM (S=1) versus TSVM (S=max)

45 89 178 356 712 1424
2

4

6

8
aut−avn

te
s
t

e
rr

o
r(

%
)

labels
46 91 181 362 724 1447
5

10

15

20
real−sim

te
s
t

e
rr

o
r(

%
)

labels

44 87 174 348 695 1389
0

10

20

30
ccat

te
s
t

e
rr

o
r(

%
)

labels
44 87 174 348 695 1389
5

5.5

6

6.5
gcat

te
s
t

e
rr

o
r(

%
)

labels

DA

TSVM(S=1)

TSVM(S=max)

3. On all datasets we found that maximum switching returned nearly identical

performance as single switching. Since it saves significant computation time, as

we report in the following section, our study establishes multiple switching (in

particular, maximum switching) as a valuable heuristic for training TSVMs.

4. These observations are also true for in-sample transductive performance for

the medium scale datasets (detailed results not shown). Both TSVM and DA

provide high quality extension to unseen test data.

174

Figure 6.3: Benefit of Unlabeled data

45 89 178 356 712 1424
0

10

20

30

40
aut−avn

te
s
t

e
rr

o
r(

%
)

labels
46 91 181 362 724 1447
0

10

20

30
real−sim

te
s
t

e
rr

o
r(

%
)

labels

44 87 174 348 695 1389
0

10

20

30
ccat

te
s
t

e
rr

o
r(

%
)

labels
44 87 174 348 695 1389
0

10

20

30
gcat

te
s
t

e
rr

o
r(

%
)

labels

DA

TSVM(S=1)

TSVM(S=max)

SVM

Computational Timings

In Figure 6.4 and Tables 6.6, 6.7 we report the computation time for our algorithms.

The following observations can be made.

1. From Figure 6.4 we see that the single switch TSVM can be six to seven times

slower than the maximum switching variant, particularly when labels are few.

DA is significantly faster than single switch TSVM when labels are relatively

few, but slower than TSVM with maximum switching.

2. In Table 6.6, we see that doubling the amount of data roughly doubles the

175

Table 6.4: TSVM (S=max) versus DA versus SVM: Error rates over unlabeled ex-
amples in full-ccat and full-gcat.

full-ccat full-gcat

l, u TSVM DA SVM TSVM DA SVM
100, 402107 14.81 14.88 25.60 6.02 6.11 11.16
100, 804314 15.11 13.55 25.60 5.75 5.91 11.16

1000, 402107 11.45 11.52 12.31 5.67 5.74 7.18
1000, 804314 11.30 11.36 12.31 5.52 5.58 7.18

Table 6.5: DA versus TSVM (S = max) versus SVM: Error rates over unlabeled
examples in kdd99.

l,u TSVM DA SVM
1000, 4897431 0.48 0.22 0.29

training time, empirically confirming the linear time complexity of our meth-

ods. The training time is also strongly dependent on the number of labels.

On kdd99 (Table 6.7), the maximum-switch TSVM took around 15 minutes to

process the 5 million examples whereas DA took 2 hours and 20 minutes.

3. On medium scale datasets, we also compared against SVMlight which took on

the order of several hours to days to train TSVM. We expect the multi-switch

TSVM to also be highly effective when implemented in conjunction with the

methods of [61].

Importance of Annealing

To confirm the necessity of an annealing component (tracking the minimizer while

lowering T) in DA, we also compared it with an alternating w,p optimization proce-

dure where the temperature parameter is held fixed at T = 0.1 and T = 0.001. This

study showed that annealing is important; it tends to provide higher quality solutions

176

Figure 6.4: Computation time with respect to number of labels for DA and Trans-
ductive l2-SVM-MFN with single and multiple switches.

45 89 178 356 712 1424
0

500

1000

1500
aut−avn

c
p

u
 t

im
e

 (
s
e

c
s
)

labels
46 91 181 362 724 1447
0

500

1000

1500
real−sim

c
p

u
 t

im
e

 (
s
e

c
s
)

labels

44 87 174 348 695 1389
0

500

1000

1500
ccat

c
p

u
 t

im
e

 (
s
e

c
s
)

labels
44 87 174 348 695 1389
0

200

400

600
gcat

c
p

u
 t

im
e

 (
s
e

c
s
)

labels

DA

TSVM(S=1)

TSVM(S=max)

as compared to fixed temperature optimization. It is important to note that the grad-

ual increase of γ′ to the user-set value in TSVM is also a mechanism to avoid local

optima. The non-convex part of the TSVM objective function is gradually increased

to a desired value. In this sense, γ′ simultaneously plays the role of an annealing pa-

rameter and also as a tradeoff parameter to enforce the cluster assumption. This dual

role has the advantage that a suitable γ′ can be chosen by monitoring performance

on a validation set as the algorithm proceeds. In DA, however, we directly apply a

framework for global optimization, and decouple annealing from the implementation

177

Table 6.6: Computation times (mins) for TSVM (S=max) and DA on full-ccat and
full-gcat (804414 examples, 47236 features)

full-ccat full-gcat

l, u TSVM DA TSVM DA
100, 402107 140 120 53 72
100, 804314 223 207 96 127

1000, 402107 32 57 20 42
1000, 804314 70 100 38 78

Table 6.7: Computation time (mins) for TSVM(S=max) and DA on kdd99 (4898431
examples, 127 features)

l, u TSVM DA
1000, 4897431 15 143

of the cluster assumption. As our experiments show, this can lead to significantly

better solutions on many problems. On time-critical applications, one may tradeoff

quality of optimization against time, by varying the annealing rate.

6.6 Conclusion

In this chapter we have proposed a family of primal SVM algorithms for large scale

semi-supervised learning based on the finite Newton technique. Our methods signifi-

cantly enhance the training speed of TSVM over existing methods such as SVMlight

and also include a new effective technique based on deterministic annealing. The new

TSVM method with multiple switching is the fastest of all the algorithms consid-

ered, and also returns good generalization performance. The DA method is relatively

slower but sometimes gives the best accuracy. Unlike the non-linear case (Chap-

ter 3) applied to manifold like datasets, on text categorization domains local minima

issues appear to be less severe. These algorithms can be very valuable in applied

178

scenarios where sparse classification problems arise frequently, labeled data is scarce

and plenty of unlabeled data is easily available. Even in situations where a good

number of labeled examples are available, utilizing unlabeled data to obtain a semi-

supervised solution using these algorithms can be worthwhile. For one thing, the

semi-supervised solutions never lag behind purely supervised solutions in terms of

performance. The presence of a mix of labeled and unlabeled data can provide added

benefits such as reducing performance variability and stabilizing the linear classifier

weights. A large-scale implementation of Linear Laplacian RLS and SVMs can also

be easily developed along the lines of Chapter 5 (i.e., by considering the linear case

corresponding to Eqn. 5.6) building on the same core Newton primal optimization

techniques covered in this chapter. These directions will be explored in future work.

REFERENCES

[1] M. Belkin. Problems of Learning on Manifolds. PhD thesis, The University of

Chicago, 2003.

[2] M. Belkin, I. Matveeva, and P. Niyogi. Regularization and regression on large

graphs. In COLT, 2004.

[3] M. Belkin, I. Matveeva, and P. Niyogi. Regularization and semi-supervised

learning on large graphs. COLT, 2004.

[4] M. Belkin and P. Niyogi. Laplacian eigenmaps and spectral techniques for

embedding and clustering. Advances in Neural Information Processing Systems,

14:585–591, 2002.

[5] M. Belkin and P. Niyogi. Using manifold structure for partially labeled classifi-

cation. Advances in Neural Information Processing Systems, 15:929–936, 2003.

[6] M. Belkin and P. Niyogi. Towards a theoretical foundation for Laplacian-based

manifold methods. Proc. of COLT, 2005.

[7] M. Belkin, P. Niyogi, and V. Sindhwani. Manifold regularization: A geomet-

ric framework for learning from labeled and unlabeled examples. Journal of

Machine Learning Research, 7:2399–2434, 2006.

[8] Mikhail Belkin and Partha Niyogi. Laplacian eigenmaps for dimensionality

reduction and data representation. Neural Comput., 15(6):1373–1396, 2003.

[9] Y. Bengio, J.F. Paiement, P. Vincent, and O. Delalleau. Out-of-Sample Exten-

sions for LLE, Isomap, MDS, Eigenmaps, and Spectral Clustering. Advances in

Neural Information Processing Systems, 16, 2004.

179

180

[10] K. Bennett and A. Demiriz. Semi-supervised support vector machines. In

Advances in Neural Information processing systems 12, 1998.

[11] K. Bennett and A. Demiriz. Semi-supervised support vector machines. Advances

in Neural Information Processing Systems, 11:368–374, 1999.

[12] A. Berlinet and C. Thomas-Agnan. Reproducing Kernel Hilbert Spaces in Prob-

ability and Statistics. Springer, 2003.

[13] T. De Bie and N. Cristianini. Semi-supervised learning using semi-definite pro-

gramming. In O. Chapelle, B. Schoëlkopf, and A. Zien, editors, Semi-supervised

learning. MIT Press, 2006.

[14] G. Bilbro, W. E Snyder, and R. Mann. Mean-field approximation minimizes

relative entropy. Journal of Optical Society of America A, 8, 1991.

[15] A. Bjork. Numerical Methods for Least Squares Problems. SIAM, 1996.

[16] A. Blake and A. Zisserman. Visual Reconstruction. MIT Press, 1987.

[17] A. Blum and S. Chawla. Learning from labeled and unlabeled data using graph

mincuts. Proc. 18th International Conf. on Machine Learning, pages 19–26,

2001.

[18] A. Blum and T. Mitchell. Combining labeled and unlabeled data with co-

training. In COLT, 1998.

[19] A. Blum and T. Mitchell. Combining labeled and unlabeled data with co-

training. Proceedings of the eleventh annual conference on Computational learn-

ing theory, pages 92–100, 1998.

181

[20] O. Bousquet, O. Chapelle, and M. Hein. Measure based regularization. Ad-

vances in Neural Information Processing Systems, 16, 2004.

[21] M. Brand. Continuous nonlinear dimensionality reduction by kernel eigenmaps.

Int. Joint Conf. Artif. Intel, 2003.

[22] U. Brefeld and T. Scheffer. Co-em support vector learning. In ICML, 2004.

[23] O. Chapelle. Training a support vector machine in the primal. Neural Compu-

tation, 19:1155–1178, 2007.

[24] O. Chapelle, M. Chi, and A. Zien. A continuation method for semi-supervised

svms. In International Conference on Machine Learning, 2006.

[25] O. Chapelle, B. Schölkopf, and A. Zien. Semi-supervised Learning. MIT Press,

2006.

[26] O. Chapelle, B. Schölkopf, and A. Zien, editors. Semi-Supervised Learning.

MIT Press, 2006.

[27] O. Chapelle, V. Sindhwani, and S. Keerthi. Branch and bound for semi-

supervised support vector machines. In Advances in Neural Information Pro-

cessing Systems, 2006.

[28] O. Chapelle, V. Sindhwani, and S. Keerthi. Branch and bound for semi-

supervised support vector machines. In Advances in Neural Information Pro-

cessing Systems, volume 20, 2007.

[29] O. Chapelle, J. Weston, and B. Scholkopf. Cluster kernels for semi-supervised

learning. Advances in Neural Information Processing Systems, 15:585–592,

2003.

182

[30] O. Chapelle and A. Zien. Semi-supervised classification by low density separa-

tion. In Tenth International Workshop on Artificial Intelligence and Statistics,

2005.

[31] F.R.K. Chung. Spectral Graph Theory. American Mathematical Society, 1997.

[32] I. Cohen and F. Cozman. Risks of semi-supervised learning. In O. Chapelle,

A. Zien, and B. Schölkopf, editors, Semi-Supervised Learning, Cambridge, MA,

USA, 2006. MIT Press.

[33] R.R. Coifman and S. Lafon. Diffusion maps. Preprint, Jan, 2005.

[34] RR Coifman, S. Lafon, AB Lee, M. Maggioni, B. Nadler, F. Warner, and

SW Zucker. Geometric diffusions as a tool for harmonic analysis and struc-

ture definition of data: Diffusion maps. Proceedings of the National Academy

of Sciences, 102(21):7426–7431, 2005.

[35] M. Collins and Y. Singer. Unsupervised models for named entity classification.

In EMNLP/VLC-99, 1999.

[36] R. Collobert, F. Sinz, J. Weston, and L. Bottou. Large scale transductive SVMs.

Journal of Machine Learning Research, 2006.

[37] A. Corduneanu and T. Jaakkola. On information regularization. Proceedings of

the Ninth Annual Conference on Uncertainty in Artificial Intelligence, 2003.

[38] F. Cucker and S. Smale. On the mathematical foundations of learning. AMER-

ICAN MATHEMATICAL SOCIETY, 39(1):1–49, 2002.

[39] S. Dasgupta, M. Littman, and D. McAllester. Pac generalization bounds for

co-training. In NIPS, 2001.

183

[40] O. Delalleau, Y. Bengio, and N. Le Roux. Efficient non-parametric function

induction in semi-supervised learning. Proceedings of the Tenth International

Workshop on Artificial Intelligence and Statistics (AISTAT 2005), 2005.

[41] C. Ding, X. He, H. Zha, M. Gu, and H. Simon. Spectral min-max cut for graph

partitioning and data clustering. Proceedings of the First IEEE International

Conference on Data Mining, pages 107–114, 2001.

[42] M.P. Do Carmo. Riemannian Geometry. Birkhauser, 1992.

[43] D.L. Donoho and C. Grimes. Hessian eigenmaps: Locally linear embedding

techniques for high-dimensional data. Proceedings of the National Academy of

Sciences, 100(10):5591–5596, 2003.

[44] S. Dumais, J. Platt, D. Heckerman, and M. Sahami. Inductive learning algo-

rithms and representations for text categorization. Proceedings of the Seventh

International Conference on Information and Knowledge Management, 11:16,

1998.

[45] D.M. Dunlavy and D.P. O’Leary. Homotopy Optimization methods for Global

Optimization. Technical Report CS-TR-4773, Univ. of Maryland., 2005.

[46] B. Efron, T. Hastie, I.M. Johnstone, and R. Tibshirani. Least angle regression.

The Annals of Statistics, 32(2):407–499, 2004.

[47] T. Evgeniou, M. Pontil, and T. Poggio. Regularization Networks and Support

Vector Machines. Advances in Computational Mathematics, 13(1):1–50, 2000.

[48] A. Frommer and P. Maas. Fast cg-based methods for tikhonov-phillips regular-

ization. SIAM Journal of Scientific Computing, 20(5):1831–1850, 1999.

184

[49] G. Fung and O.L. Mangasarian. Semi-supervised support vector machines for

unlabeled data classification. Optimization Methods and Software, 15(1):99–05,

2001.

[50] T. Gartner, Q. V. Le, S. Burton, A. J. Smola, and Vishwanathan S.V.N. Large

scale multiclass transduction. In NIPS, 2005.

[51] A. Grigor’yan. Heat kernels on weighted manifolds and applications. Cont.

Math, 398, 93-191, 2006.

[52] L. Hagen and AB Kahng. New spectral methods for ratio cut partitioning and

clustering. Computer-Aided Design of Integrated Circuits and Systems, IEEE

Transactions on, 11(9):1074–1085, 1992.

[53] J. Ham, D.D. Lee, and L.K. Saul. Semisupervised alignment of manifolds.

Proceedings of the Annual Conference on Uncertainty in Artificial Intelligence,

Z. Ghahramani and R. Cowell, Eds, 10:120–127, 2005.

[54] M. Hein, J.Y. Audibert, and U. von Luxburg. From graphs to manifolds-weak

and strong pointwise consistency of graph Laplacians. Proceedings of the 18th

Conference on Learning Theory (COLT), pages 470–485, 2005.

[55] T. Hofmann and J. M. Buhmann. Pairwise Data Clustering by Deterministic

Annealing. IEEE TPAMI, 1:1–14, 1997.

[56] V. de Silva J. B. Tenenbaum and J. C. Langford. A global geometric framework

for nonlinear dimensionality reduction. Science, 290, 2000.

[57] T. Joachims. Transductive inference for text classification using support vector

machines. In International Conference on Machine Learning, 1999.

185

[58] T. Joachims. Transductive inference for text classification using support vector

machines. Proceedings of the Sixteenth International Conference on Machine

Learning, pages 200–209, 1999.

[59] T. Joachims. Transductive learning via spectral graph partitioning. In Inter-

national Conference on Machine Learning, 2003.

[60] T. Joachims. Transductive learning via spectral graph partitioning. Proceedings

of the International Conference on Machine Learning, pages 290–297, 2003.

[61] T. Joachims. Training linear svms in linear time. In Proceedings of the ACM

Conference on Knowledge Discovery and Data Mining (KDD), 2006.

[62] S. S. Keerthi and D. M. DeCoste. A modified finite Newton method for fast

solution of large scale linear SVMs. Journal of Machine Learning Research,

6:341–361, 2005.

[63] C. Kemp, T.L. Griffiths, S. Stromsten, and J.B. Tenenbaum. Semi-supervised

learning with trees. Advances in Neural Information Processing Systems, 16,

2004.

[64] S. Kirkpatrick, C. Gelatt, and M. Vecchi. Optimization by simulated annealing.

In Science, pages 671–680, 1983.

[65] I. R. Kondor and J. Lafferty. Diffusion kernels on graphs and other discrete

input spaces. In International Conference on Machine Learning, 2003.

[66] J. Lafferty and L. Wasserman. Challenges in statistical machine learning. Sta-

tistica Sinica, 16(2):307–323, 2006.

[67] S. Lafon. Diffusion Maps and Geometric Harmonics. PhD thesis, Yale Univer-

sity, 2004.

186

[68] D.D. Lewis, Y. Yang, T. Rose, and F. Li. Rcv1: A new benchmark collection

for text categorization research. Journal of Machine Learning Research, 2004.

[69] A. K. McCallum. Bow: A toolkit for statistical language modeling, text re-

trieval, classification and clustering. In http://www.cs.cmu.edu/∼mccallum/bow,

1996.

[70] K. Nigam and R. Ghani. Analyzing the effectiveness and applicability of co-

training. In CIKM, 2000.

[71] K. Nigam, A.K. Mccallum, S. Thrun, and T. Mitchell. Text Classification from

Labeled and Unlabeled Documents using EM. Machine Learning, 39(2):103–

134, 2000.

[72] J. Nocedal and S. Wright, editors. Numerical Optimzation. Springer, 2000.

[73] M.R. Osborne, B. Presnell, and B.A. Turlach. On the lasso and its dual. Journal

of Computational and Graphical Statistics, 9:319–337, 2000.

[74] T. Poggio and F. Girosi. Regularization algorithms for learning that are equiv-

alent to multilayer networks. In Science, pages 978–982, 1990.

[75] K. Rose. Deterministic annealing for clustering, compression, classification,

regression, and related optimization problems. IEEE TPAMI, 80:2210–2239,

1998.

[76] S.T. Roweis and L.K. Saul. Nonlinear Dimensionality Reduction by Locally

Linear Embedding. Science, 290, 2000.

[77] B. Schölkopf and A.J. Smola. Learning with Kernels. MIT Press, Cambridge,

MA, 2002.

187

[78] B. Scholkopf and A.J. Smola. Learning with Kernels. MIT Press Cambridge,

Mass, 2002.

[79] M. Seeger. Learning with labeled and unlabeled data. Inst. for Adaptive and

Neural Computation, technical report, Univ. of Edinburgh, 2001.

[80] J. Shi and J. Malik. Normalized cuts and image segmentation. IEEE. Trans.

on Pattern Analysis and Machine Intelligence, 22:888–905, 2000.

[81] V. Sindhwani. Kernel machines for semi-supervised learning. Master’s thesis,

The University of Chicago, 2004.

[82] V. Sindhwani, M. Belkin, and P. Niyogi. The geometric basis of semi-supervised

learning. Book Chapter in Semi-supervised Learning, Eds. Chapelle, O. and

Schölkopf, B. and Zien, A., 2006.

[83] V. Sindhwani, W. Chu, and S.S. Keerthi. Semi-supervised Gaussian Process

Classifiers . IJCAI07, International Joint Conference on Artificial Intelligence,

2007.

[84] V. Sindhwani, S. Keerthi, and O. Chapelle. Deterministic annealing for semi-

supervised kernel machines. In ICML, 2006.

[85] V. Sindhwani and S. S. Keerthi. Large scale semi-supervised linear SVMs. In

SIGIR, 2006.

[86] V. Sindhwani, P. Niyogi, and M. Belkin. Beyond the point cloud: From trans-

ductive to semi-supervised learning. In ICML, 2005.

[87] V. Sindhwani, P. Niyogi, and M. Belkin. Beyond the point cloud: from trans-

ductive to semi-supervised learning. ICML05, 22nd International Conference

on Machine Learning, 2005.

188

[88] V. Sindhwani, P. Niyogi, and M. Belkin. A co-regularization approach to semi-

supervised learning in multiple views. In Workshop on Learning in Multiple

Views, ICML, 2005.

[89] A. Smola and I. R. Kondor. Kernels and regularization on graphs. In COLT,

2003.

[90] A. Smola and R. Kondor. Kernels and regularization on graphs. Conference on

Learning Theory, COLT/KW, 2003.

[91] M. Szummer and T. Jaakkola. Partially labeled classification with Markov

random walks. Advances in Neural Information Processing Systems, 14:945–

952, 2002.

[92] J.B. Tenenbaum, V. Silva, and J.C. Langford. A Global Geometric Framework

for Nonlinear Dimensionality Reduction. Science, 290(5500):2319, 2000.

[93] R. Tibshirani. Regression selection and shrinkage via the lasso. Technical report,

Stanford Univ., 1994.

[94] A.N. Tikhonov. Regularization of incorrectly posed problems. Sov. Math. Dokl,

4:1624–1627, 1963.

[95] I. Tsang and J. Kwok. Large scale sparsified manifold regularization. In NIPS,

2007.

[96] V. Vapnik and A. Sterin. On structural risk minimization or overall risk in a

problem of pattern recognition. Automation and Remote Control, 10(3):1495–

1503, 1977.

[97] V. N. Vapnik. Statistical Learning Theory. John Wiley & Sons, Inc., New York,

1998.

189

[98] V.N. Vapnik. Statistical Learning Theory. Wiley-Interscience, 1998.

[99] J.P. Vert and Y. Yamanishi. Supervised graph inference. Advances in Neural

Information Processing Systems, 17:1433–1440, 2005.

[100] P. Vincent and Y. Bengio. Kernel matching pursuit. Machine Learning, 48:165–

187, 2002.

[101] U. von Luxburg. A tutorial on spectral clustering. Statistics and Computing,

2007.

[102] U. von Luxburg, M. Belkin, and O. Bousquet. Consistency of spectral clustering.

Max Planck Institute for Biological Cybernetics Technical Report TR, 134, 2004.

[103] G. Wahba. Spline models for observational data. Society for Industrial and

Applied Mathematics Philadelphia, Pa, 1990.

[104] W. Wapnik and A. Tscherwonenkis. Theorie der Zeichenerkennung. Akademie

Verlag, Berlin, 1979.

[105] L. Xu, J. Neufeld, B. Larson, and D. Schuurmans. Maximum margin clustering.

In Advances in Neural Information Processing Systems, 2004.

[106] D. Yarowsky. Unsupervised word sense disambiguation rivaling supervised

methods. In ACL, 1995.

[107] T. Zhang, A. Popescul, and B. Dom. Linear prediction models with graph

regularization for web-page categorization. In KDD, 2006.

[108] D. Zhou, O. Bousquet, T.N. Lal, J. Weston, and B. Schölkopf. Learning with

local and global consistency. In S. Thrun, L. Saul, and B. Schölkopf, editors,

190

Advances in Neural Information Processing Systems, volume 16, pages 321–328,

Cambridge, MA, USA, 2004. MIT Press.

[109] D. Zhou, O. Bousquet, T.N. Lal, J. Weston, and B. Scholkopf. Learning with lo-

cal and global consistency. Advances in Neural Information Processing Systems,

16:321–328, 2004.

[110] X. Zhu and Z. Ghahramani. Learning from labeled and unlabeled data with

label propagation. Technical Report 02-107, CMU-CALD, 2002.

[111] X. Zhu, Z. Ghahramani, and J. Lafferty. Semi-supervised learning using Gaus-

sian fields and harmonic functions. Proceedings of the 20th International Con-

ference on Machine Learning, 2003.

[112] X. Zhu, J. Kandola, Z. Ghahramani, and J. Lafferty. Nonparametric Transforms

of Graph Kernels for Semi-Supervised Learning. Advances in neural information

processing systems, 17, 2005.

